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Abstract
Part II of the review shows how the stationary Bloch wave operator of part I
can be suitably modified to give a time-dependent wave operator. This operator
makes it possible to use a relatively small active space in order to describe the
dynamical processes which occur in quantum mechanical systems which have
a time-dependent Hamiltonian. A close study is made of the links between
the time-dependent and time-independent wave operators at the adiabatic
limit; the analysis clarifies the way in which the wave operator formalism
allows the time evolution of a system or a wave packet to be described in terms
of a fast evolution inside the active space together with weak transitions out of
this space which can be treated by perturbation methods.

Two alternative wave operator equations of motion are derived and
analysed. The first one is a non-linear differential equation in the usual Hilbert
space; the second one is a differential equation in an extended Hilbert space with
an extra time variable added and becomes equivalent to the usual Bloch equation
when the Floquet Hamiltonian is taken in place of the ordinary Hamiltonian.
A study is made of the close relationships between the time-dependent wave
operator formalism, the Floquet theory and the (t, t ′) theory. Some original
methods of solution of the two forms of wave operator equation are proposed
and lead to new techniques of integration for the time-dependent Schrödinger
equation (e.g., the generalized Green equation procedure). Mixed procedures
involving both the time-independent and time-dependent wave operators are
shown to be applicable to the internal eigenstate problem for large complex
matrices.

A detailed account is given of the description of inelastic and photoreactive
processes by means of the time-dependent wave operator formalism, with
particular attention to laser-molecule interactions. The emphasis is on
projection operator techniques, with special attention being given to the method
of selection of the active space and to the use of basis set expansions in terms
of instantaneous or generalized Floquet eigenstates. The adiabatic transport
principle and its representation in terms of the wave operator approach are
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described, as well as the way in which effective energy trajectories in the
complex plan can act as indicators of the degree of adiabaticity or non-
adiabaticity of a dynamical process.

PACS numbers: 03.65.Nk, 02.30.Tb, 02.60.−x, 03.65.−w, 31.15.−p

Contents

1. A brief historical review R412
1.1. Some general references on related themes R415

2. From the Møller wave operator to the time-dependent Bloch wave operator R417
2.1. Quantum scattering theory and the Møller wave operator R417
2.2. The optical potential approach for an interaction which is turned on rapidly R419
2.3. The general case of a time-dependent Hamiltonian R422

3. The partitioning technique and its application to inelastic and
photoreactive processes R423
3.1. The field-matter interaction: the choice of the gauge R424
3.2. Quantum formulation, Floquet formalism and semi-classical point of view R425
3.3. The use of projected dynamics in an active space R428
3.4. The selection of the active space R430

4. Temporal analysis of the time-dependent wave operator R434
4.1. From the time-dependent wave operator to the stationary one R434
4.2. The evolutive active space R437

5. Analyses in an extended Hilbert space and the generalized
Green function approach R439
5.1. The time and the energy points of view R439
5.2. Wavefunction expansion using a basis of Floquet eigenstates R441
5.3. The effective Hamiltonian as an indicator of the active space size R445
5.4. A generalized Green function integration R447

6. The integration of the time-dependent wave operator equation R450
6.1. The integration of ih̄∂X/∂t = Qo(1 − X)H(1 + X)Po R450
6.2. The integration of HF � = �HF � R454
6.3. The time-dependent optical potential R456

7. The wave operator in the treatment of inelastic and photoreactive processes R458
7.1. Short duration interactions R461
7.2. Quasi-periodic interactions R464

8. Conclusion R468
References R470

1. A brief historical review

Part I of this review paper included a description of the Bloch effective Hamiltonian theory,
which was developed within nuclear physics in the 1960s to determine the effective interactions
between nucleons and in quantum chemistry to overcome some limitations of ab initio
and semi-empirical methods. The original wave operators of Møller (1945) were defined
within the context of scattering theory, while the later work of Bloch (1958), Des Cloizeaux
(1960), Durand (1983) and others developed the theory of the Bloch wave operator, which is
more suitable for dealing with bound state problems. Part I of this review (Killingbeck and
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Jolicard 2003) made heavy use of the partitioned matrix approach (for the benefit of general
readers) and showed how the use of a traditional Rayleigh–Ritz approach to bound state
calculations would naturally lead to the construction of the Bloch and related wave operators
without any use of the concepts of Møller.

When an attempt is made to extend the Bloch wave operator formalism to treat time-
dependent phenomena it is then necessary to deal with the time development operators U(t, to)

which describe the evolution of a quantum mechanical state; in this context it becomes more
natural to explore links with the Møller wave operators, which, although time independent,
are usually defined within the context of the time-dependent theory as the limits for t → ±∞
of a simple product exp[iHt/h̄] exp[−iHot/h̄] of time development operators. The book
by Roman (1965) described the derivation of the Møller wave operators via time-dependent
theory, while the book by Pearson (1988) gave the rigorous mathematical theory for a range of
wave operators which have been defined in scattering theory. In the end, however, it turns out
(sections 2.2 and 2.3) that the various approximations which need to be made to the Møller
operator lead back to what is essentially the Bloch wave operator. Part II of this review looks
at how time dependence can be introduced into Bloch wave operator theory (extending the
ideas sketched briefly in the appendix of part I) and describes some applications to problems
of molecular dynamics, particularly to the theory of the photodissociation of molecules by
laser pulses. Several of the techniques described in part I will be seen to be equally useful
in the calculation of time-dependent behaviour, the main novel feature being that complex
variable forms of the algorithms are needed, since the matrices studied often have complex
elements.

Various topics in molecular interaction theory have given rise to both stationary and time-
dependent treatments. In scattering theory, for example, the close-coupling formulation and
the Lippmann–Schwinger approach use the mathematics of differential and integral equations
and proceed by finding solutions of the time-independent Schrödinger equation which have
specific energies and which obey the correct asymptotic conditions. By contrast, the wave
packet formalism applied to the same problems gives a time-dependent treatment which
involves the propagation and the asymptotic analysis of wave packets of finite extent; this
approach can be used to treat inelastic or reactive interactions over finite energy ranges
corresponding to the energy spectrum of the wave packet. A Gaussian wave packet is usually
used for the translational asymptotic degree of freedom because it allows good control of its
extent in phase space (Kosloff 1988). For bound asymptotic degrees of freedom an eigenstate
is often chosen as the initial wavefunction and the total initial wave packet is constructed as a
product of the wave packets of different degrees of freedom.

Like the methods described above, the wave operator formalism has also evolved; the
operators of Bloch and Møller have acquired time-dependent forms which are analysed in the
present review. This evolution has been associated with new trends in the experimental and
theoretical treatments of molecular dynamics during the last two decades. Two of these trends
are particularly important.

• The first is the introduction of finite discrete L2 representations which are able to
reproduce the bound part of the molecular spectrum and also to describe the continuum
part. The use of similarity transformations in the complex plane, or of absorbing
boundary conditions (sometimes called the optical potential method) makes possible the
calculation of resonance states and the treatment of reactive or photoreactive processes
using these representations. The discretization approach is appropriate for implementation
on digital computers and has been facilitated by recent progress in the area of discrete
variable representations (DVRs) (Kosloff and Kosloff 1983, Light et al 1985, Bac̆ic̀ and



R414 Topical Review

Light 1989). It is now possible to perform analytical continuation of the resolvents in
the complex plane by operating within these discrete representations. The Møller wave
operator and the Lippmann–Schwinger equation, which are both directly related to the
resolvent operators, are thus treatable by these modern techniques within the optical
potential formalism (see section 2.2). The use of finite discrete L2 representations to
describe dynamical processes leads back to the use of large matrices, i.e. to the context
of part I of this review, with the extra feature that the matrices (and part of the spectrum)
will be complex. Most of the entities arising in the theory of the time-independent wave
operator have an analogue in the theory of the time-dependent wave operator; for example,
the static effective Hamiltonian which gives a subset of the energy levels in the static case
becomes a time-dependent effective Hamiltonian which drives the dynamical processes
in the active space; this space is the analogue of the target space in the static case and
is represented in a first approximation by a model space analogous to the A space of
part I. This close similarity at the theoretical level means that some computational
techniques which were introduced in part I also find applications in part II; the recursive
distorted wave approximation (RDWA) and the single cycle method (SCM) are both
applicable (in complex variable form) once the time-dependent problem has been
converted to a form involving large complex matrices.

The combined introduction of discrete representations and complex asymptotic
transformations has helped in improving the treatment of quantum dissipative systems.
Some twenty years ago the most commonly used quantum mechanical approach was
the stationary coupled channel (CC) approach, which is based on a solution of the
stationary scattering equation, and is difficult (or even impossible) to implement for
systems in which more than one continuum of final states exists. For such systems the
time-dependent quantum mechanical methods based on wave packet propagation have
clear advantages. Nevertheless the non-local character of the interactions, which requires
a global description of all the molecular phase space, dramatically increases the memory
and CPU time requirements in many cases. The wave operator method, which selects
reduced model spaces and then studies the associated projected dynamics, is an efficient
tool in this area. Its applicability in conjunction with a non-Hermitian description of
dissipative systems makes it useful for the new non-Hermitian quantum mechanics of
Narevicius and Moiseyev (1998, 2000), which introduces complex adiabatic potential
energy surfaces to separate slow and fast motions.

• The second trend is the increasing study of control processes, particularly the selective
laser control of molecular dynamical processes, which is one of the major goals of
current photophysics and photochemistry. Intense and ultrashort laser pulses induce
strong non-linear effects during their time of interaction with a molecule. To describe
the associated experiments it is essential to possess an accurate theory of the dynamical
processes occurring during the interaction. Formulations which concentrate on asymptotic
behaviour, such as the close-coupling treatment, are relatively inefficient for this purpose.
In contrast, the time-dependent wave operator theory, which uses generalized Hilbert
spaces (with the time as a supplementary variable) and which describes the dynamics
using small active spaces, is well adapted to investigate these problems, particularly when
many repetitive numerical trials are necessary to select the best group of adiabatically
evolving parameters (see section 7.2).

Most of the abbreviations used throughout the text are explained in context but we gather
together here a few of the ones which are used fairly frequently: OPM (optical potential
model); TDOP (time-dependent optical potential); TDSE (time-dependent Schrodinger
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equation); TDWOT (time-dependent wave operator theory), IR, UV (infrared, ultraviolet);
fs (femtosecond, i.e. 10−15 s); cw (continuous wave, as opposed to pulsed, for a laser).

1.1. Some general references on related themes

When the wave operator theory is applied to perform calculations it will usually need
to be combined with various other concepts and techniques which are relevant to the
treatment of the time-dependent Schrodinger equation. This means that when describing
applications, particularly to laser-molecule interactions, the review has to mention several
ancillary techniques which are not the main theme of the paper but which might not be
familiar to the general reader. Although the text gives a fairly detailed discussion of some
of these techniques, the authors have thought it useful to give a brief overall survey of
them. Accordingly this brief literature survey cites some works which will enable the
general reader to explore in more detail the context within which the time-dependent wave
operator theory has been and is being applied. Several recent review articles have given
much information about the modern theory of the interaction of laser pulses with atoms and
molecules. The review of Gavrila (2002) dealt with atomic stabilization due to intense laser
beams and that of Shapiro and Brumer (2003) treated the control problem. The problem
of the control of molecular processes by means of appropriately designed groups of laser
pulses is nowadays being widely studied. The very recent review by Guerin and Jauslin
(2003) has the double interest of discussing the control problem and of setting out the
Floquet theory, which is another of the themes ever-present in modern work on laser-molecule
interactions.

The original mathematical work of Floquet on differential equations with periodic
coefficients has had several by-products in physics. When the periodicity is a spatial one
the theory leads to the well-known theorems about the periodicity of the wavefunctions of
band theory for electrons moving in the periodic potential of a crystal lattice. For an atom or
molecule which is acted on by a laser beam of a given frequency the periodicity is in the time
variable and the corresponding theory has taken over some of the terminology familiar to solid
state physicists; for example, it is common to refer to ‘the first Brillouin zone’ in discussions
of the quasi-energies associated with the Floquet theory. The literature on Floquet theory
is vast and so the authors have selected only a few papers which will give a general reader
a good survey of the historical development and uses of the theory. The paper by Shirley
(1965) treated the theory of a Schrödinger equation with a Hamiltonian which is periodic with
a single fixed time period. The work of Sambe (1973) treated the problem in more detail and
used the notions both of an extended Hilbert space (with the time variable included) and of
the Floquet Hamiltonian; both notions occur throughout the present review. Howland (1974),
within a scattering theory context, considered how to construct transformations which would
produce a stationary problem for a Hamiltonian with a general (not necessarily periodic) time
dependence. Ho et al (1983) extended Shirley’s work on singly periodic Hamiltonians to the
case of a multiperiodic Hamiltonian and Garrison (1999) treated the multimode Floquet theory
by a group theoretical approach, with an account of the history of the theory, including the
solid state case, which involves a spatial periodicity. Recently, Palma et al (2002) gave
a novel treatment of the Floquet states of a harmonic oscillator in a single-mode field by
using the Bargmann–Segal space. Amongst the many works which have combined theoretical
and calculational treatments of Floquet theory we cite only a very few, which themselves
gave references to previous works as well as containing some original developments. The
works of Chu (1981), Jolicard et al (1994) and of Unnikrishnan (1995) described a range of
useful techniques (complex coordinate transformations, L2 discretization, the extended Hilbert
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space) while treating the types of transitions produced in a molecule by intense laser fields.
The paper by Emmanouilidou and Reichl (2002) treated electron scattering rather than laser-
molecule interactions but gave a good account of the relevant Floquet theory. Very recently
Daems et al (2003) have given a treatment of the theory of pulse-driven systems which uses a
sequence of transformations to develop a superconvergent perturbation theory. Their approach
represents an extension to quantum mechanics of the KAM perturbation theory of classical
mechanics but adds some new features to previous attempts in this direction. In several
respects the KAM approach in quantum mechanics resembles the Van Vleck perturbation
theory briefly described in part I, but has a different way of solving the equations, as well
as being used in the extended Hilbert space rather than in the standard Hilbert space. The
R matrix approach to multiphoton processes due to laser-molecule interactions has been
developed over many years by the group of P G Burke at Belfast; the detailed paper by Burke
et al (2000) showed how the R matrix approach can be allied with Floquet theory to give a
non-perturbative description of multiphoton processes and it gave some illustrative numerical
results.

The (DVR) approach is one of the most widely used methods for producing a large
but finite matrix which can give an accurate description of the bound or resonant states of a
molecule as well as giving a discretized simulation of the continuous part of the spectrum. The
technique has been gradually refined,with various authors having studied specific technical
points. Whitnell and Light (1989) developed a three-dimensional DVR to study the H +

3
ion. Szalay (1993) studied the DVR representation of differential operators. Corey and
Tromp (1995) looked at how to endow the DVR with the same variational properties as the
simple Rayleigh–Ritz method. Kauppi (1996) calculated vibrational energy levels with a DVR
method which avoided the need to obtain an explicit functional form for the potential energy
surface, since only the data at the discrete points used by the DVR were employed. Schweizer
and Fassbinder (1997) combined DVR and finite element techniques. Tuvi and Band (1997)
studied the special methods which must be adopted to produce a DVR matrix which is both
Hermitian and has elements which can be calculated analytically. Wei (1997) studied the
presence of ‘ghost levels’ in some DVR calculations and showed how to remove them by
modifying the formalism. Chen and Guo (1999) showed how the use of symmetry adaption
can reduce the computational effort of DVR calculations; even for molecules with no physical
symmetry the inherent symmetry of the kinetic energy operator can be exploited. Weatherford
et al (2002) described a general approach to the construction of DVR representations, using
a method which involves a combination of Lanczos matrix methods and Gaussian integration
theory.

Within the context of a Floquet approach in a generalized Hilbert space, the (t, t ′) approach
introduced into quantum mechanics a device which goes back as far as the work of Jacobi
in classical mechanics, namely the use of a dummy ‘time’ variable t ′, with the ‘physical’
time being placed on an equal footing with the space variables. The result of this approach
is that various problems of time-ordering which appear in a traditional approach to the time-
dependent Schrodinger equation are side-stepped, since the problem formally resembles that
for a time-independent Hamiltonian (with the new time variable t ′). This facilitates the use of
the more simple theory of time development associated with a time-independent Hamiltonian.
The main problem of interpretation then becomes that of extracting any required quantities
from the formalism; this usually involves taking the limiting case t → t ′. The relevant
theory, together with some applications, was given in the papers of Peskin and Moiseyev
(1993) and Peskin et al (1994a, 1994b). Yao and Wyatt (1994) explored in detail the use
of the extended Hilbert space, showing how it made possible the application of several
techniques which are usually applied to stationary quantum mechanical calculations. Some
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of the wave operator approaches described in the present review have a resemblance to
the (t, t ′) theory and so comments on that theory appear at some points throughout the
text.

2. From the Møller wave operator to the time-dependent Bloch wave operator

The theoretical description of many experiments in molecular dynamics is characterized
by two special but contrasting features; the sizes of the vector spaces involved are very
large as a consequence of the non-local character of the quantum interactions, but the
number of eigenvectors effectively contributing to the dynamical processes is often small,
especially when suitably adapted representations such as the generalized Floquet eigenstate
representation are used (see section 5.2). The aim of the wave operator theory is to condense
the dynamics into these small active spaces by using projection techniques and to form the
effective Hamiltonians which drive this reduced dynamics. Two features require special
attention in formulating such a project: (i) the choice of the representation, especially in
the presence of continua (ii) the status of the time variable in the analytical and numerical
treatments.

With regard to the status of the time variable t one can distinguish three different cases in
an increasing order of difficulty. In the most simple case the Hamiltonian H(H = Ho + V )

of the molecular system is an Hermitian and time-independent Hamiltonian used to describe
the evolution of a non-dissipative system. The interaction V is assumed to be delocalized in
time and the total energy takes a precise and constant value throughout as a consequence of
the Heisenberg principle. The quantum scattering theory of inelastic collisions is the typical
example of such a situation. This first case is analysed in section 2.1. The second case,
corresponding to a time-independent interaction which is turned on suddenly, is analysed in
the framework of the stationary wave operator theory in section 2.2. Finally the third case,
that of a general time-dependent Hamiltonian, allows us to introduce the time-dependent wave
operator concept in section 2.3.

2.1. Quantum scattering theory and the Møller wave operator

The Møller wave operator �+ arises in the context of scattering theory in a form which is
independent of an explicit specification of the initial state. We assume here that the total
Hamiltonian H which describes the scattering is split into two terms.

H = Ho + H1 (2.1)

where Ho is taken to be the Hamiltonian for all the free particles and H1 includes interactions
responsible for collision processes. We also assume that Ho is so simple that all its eigenvalues
and eigenvectors are known and, finally, that to each state |E, n〉 in the continuous part of
the Ho spectrum which has an energy E there belongs a corresponding state in the continuum
part of the H spectrum which has the same energy. The discrete bound states are supposed
to lie lower than any state in the continuum and we exclude for the moment the presence of
metastable states embedded in the continuum (although this possibility can be considered in
the framework of the Bloch wave operator theory).

Although the standard Møller wave operator is a purely time-independent one, an
interesting time-dependent point of view can be adopted towards it (the value of which
will be clearer with the introduction of the time-dependent wave operator in section 2.3).
By introducing the time evolution operator in an interaction representation, the Møller wave
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operators are defined by Roman (1965) and Levine (1969)

�+ = U(0,−∞) = lim
t ′→−∞

e
i
h̄
t ′(Ho+H1) e− i

h̄
t ′Ho

(2.2)
�− = U(0, +∞) = lim

t ′→+∞
e

i
h̄
t ′(Ho+H1) e− i

h̄
t ′Ho .

By using the integral representation,

U(0,−∞) = lim
ε→0+

ε

∫ 0

−∞
eεt ′e

i
h̄
t ′(Ho+H1) e− i

h̄
t ′Ho dt ′ (2.3)

and by applying this operator to a stationary eigenvector |E, n〉 of the unperturbed problem,
one obtains the state

|E, n+〉 = lim
ε→0+

iε

E − H + iε
|E, n〉 (2.4)

which can be identified with the exact incoming state of the time scattering problem and which
is a solution of the Lippmann–Schwinger equation.

|E, n+〉 = |E, n〉 + lim
ε→0+

(E − Ho + iε)−1H1|E, n+〉. (2.5)

A similar equation is obtained for |E, n−〉 by taking the term −iε in place of +iε on the
rhs of equation (2.5). From the previous definitions, it appears that |E, n+〉 coincides with an
unperturbed state of the reference system at an infinitely remote past time: limt→−∞ |E, n+〉 =
|E, n〉; similarly limt→+∞ |E, n−〉 = |E, n〉. These identities justify the names incoming and
outgoing states used to specify the states |E, n+〉 and |E, n−〉, respectively. Thus, �± induces
a state-to-state correspondence between the states of H with the continuous energy E and the
initial states of Ho with the same energy

|E, n±〉 = �±|E, n〉. (2.6)

This leads to the formal definition

�± =
∑

n

∫
dE|E, n±〉〈E, n| (2.7)

when using the normalization convention: 〈E′, n′|E, n〉 = δ(E′ − E)δn′−n.
In the notation used above, n designates the quantum numbers of the initial state,

generally not conserved during the interaction, and the symbol ± refers to the boundary
conditions. These conditions are introduced in a formal way by working in the complex
plane, with E± = E ± iε in equation (2.7), where ε is real and positive and tends to zero.
Equation (2.5) can be obtained in a fairly elementary way by seeking the states |E, n+〉 which
arise from |E, n〉 as the interaction H1 is turned on. If it is supposed that |E, n〉 is an eigenstate
of Ho with energy E while |E, n±〉 are eigenstates of Ho + H1 with the same energy E (which
is possible for the continuous spectrum) then the reader will quickly confirm that the formal
result (2.5) is obtained, with E in the E± position and, of course, with the problem that
(E −Ho)

−1 is singular. To avoid this problem it is necessary to use a limiting process; the use
of E± = E ± iε (with ε → 0) leads to states |E, n±〉 which describe an incoming (+) and an
outgoing (−) scattering state, respectively. The lecture notes of Møller (1959) gave a detailed
demonstration of this for the case in which |E, n〉 is an incoming plane wave of energy E.

Equations (2.4)–(2.6) reveal the close relationship between the Møller wave operator and
the Green’s operator G(E+) = (E+ − H)−1, namely

�(E+) = I + G(E+)H1 (2.8)

and also bring to light the links between �, the transition operator T = V � and the S matrix
(S = �−†�+), where the symbol † denotes the Hermitian adjoint.
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These equations reaffirm that the Møller wave operator is associated with very precise
conditions: it is appropriate for a precise energy and for interactions produced by delocalised
and time-independent couplings. The limits which the previous equations introduce, namely
ε → 0 and t → ∞, are related to these conditions. Moreover, the conservation of energy
condition implicitly imposes the need for a rigorous description of the molecular continuum.
Such a situation is, for the wave operator theory, a limiting case in which the active space
associated with a fixed energy value E of the continuum consists of a single eigenstate |E, n+〉
which reduces to the state |E, n〉 when the molecular interaction vanishes. The simplicity of
the active space results partly from the restrictive assumptions, introduced at the begining,
that the continuum and the discrete spectra do not overlap and that metastable states are not
present. In the next two sections we will be able to loosen these restrictions by adopting a
discrete representation of the continuum in place of a rigorous description and by introducing
the time-dependent wave operator concept.

2.2. The optical potential approach for an interaction which is turned on rapidly

A slightly more complicated situation appears in cases for which the interaction is turned
on suddenly at a precise time (which can be chosen as t = 0 without loss of generality).
The initial state can be prepared in various ways. One can, for example, imagine that the
wavefunction starts as an eigenstate of Ho at t = −T (with H(t = −T ) = Ho) and is
propagated over a finite interval [−T , 0]. This propagation leads to a state �(t = 0) different
from any eigenstate of H(t = 0). The wavefunction is driven from this instant by a constant
Hamiltonian H = H(t = 0+). The evolution of a molecule submitted to a constant laser field
corresponds to this case if the interval [−T , 0] represents the small but finite time duration
over which the molecule-field interaction is turned on.

The time integration procedure is relatively simple because of the pure exponential form
of the evolution operator.

U(t, 0;H) = exp[−iHt/h̄] (2.9)

but the time localization of the evolution induces a dispersion of the energies, in conformity
with the Heisenberg principle. This dispersion is revealed by introducing the operator K,
limited to positive values of t;

K(t, 0) = �(t)U(t, 0;H). (2.10)

K is the solution of a differential equation which contains an inhomogeneous term describing
the initial conditions;(

ih̄
∂

∂t
− H

)
K(t, 0) = ih̄δ(t, 0). (2.11)

K is also related to the Green function of equation (2.8) by a Fourier transform;

G(E+) = 1

ih̄

∫ +∞

−∞
dτ exp(iEτ/h̄)K(τ)

= lim
ε→0+

1

E − (H − iε)
. (2.12)

In this case the active space is not composed of a unique eigenstate as it was for the exact
quantum scattering theory. There is not, as in equation (2.6), a state-to-state correspondence
(|E, n+〉 ↔ |E, n〉). The wavefunction spreads out over various eigenstates of H and the
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role of the wave operator theory is to select these states and to formulate a correct dynamical
description using this reduced space. The analysis of the evolution equation(

ih̄
∂

∂t
− H

)
�(t) = δ(t, 0)�(t = 0) (2.13)

directly derived from the operator equation (2.11), reveals that the active space is composed of
the set of eigenvectors {|φn〉, n = 1, N} of H which contribute significantly to the expansion
of |�(t = 0)〉. The dimension N of this space is more or less large, depending on the initial
conditions and on the required precision; the wave operator approach requires N to be finite
in any case and is naturally allied to a discretized description of the molecular continua. This
discretization can be obtained by using the optical potential model (Jolicard and Austin 1985,
1986), i.e. by taking a finite asymptotic complex potential −iVopt(r) along the spatial radial
axis in place of the term −iε in the energy-based definition of the Green function (Durand
and Paidarovà 1996). The schematic correspondence involved (relating ‘energy’ and ‘space’
limiting processes) is of the form

lim
ε→0+

1

E − (H − iε)
⇒ 1

E − (H − iVopt(r))
. (2.14)

This is a coarse grained procedure which destroys the exact representation of the continuum;
all the scattering states are strongly modified and their spectrum is rotated in the complex
plane. Nevertheless, these distortions do not have any crucial negative consequences for
the description of dynamical effects; the procedure is consistent with the use of dynamical
treatments using contracted L2 basis sets because some important fundamental features
are preserved. The optical potential transformation, for example, assures the analytical
continuation of the Green function through the cut constituted by the real axis, with
Gα(z) = 〈

α
∣∣ 1
z−H

∣∣α〉 = (Gα(z∗))∗. It can be introduced to explore the second Riemann
sheet, thus revealing the complex nature of the resonance states without contributing directly
to their eigenvalues. It can also be used to determine the resonance spectrum of a quantum
system (Jolicard et al 1988) or to investigate photoreactive processes which are dominated
by the influence of field-matter resonances (Jolicard and Atabek 1992). In numerical work
the imaginary potentials make possible the use of finite L2 representations for the continua.
One can then expand the wavefunction �(t = 0) in equation (2.13) on a finite basis set
{|φ〉n, n = 1, N} of eigenvectors of (H − iVopt).

Similar concepts have been used in the variational treatment of reactive scattering. The
conversion of the multiarrangement channel (MAC) problem into a single arrangement channel
(AC) problem is achieved by employing a selected set of negative imaginary potentials which
absorb the fluxes leaking from a single retained AC (Neuhauser and Baer 1990, Neuhauser et al
1990). By extending the principle from the reagents AC to the product AC, it is possible to find
state-to-state reactive probabilities by treating one AC at a time (Last and Baer 1992, 1994)

In the context of the wave operator theory the introduction of negative imaginary absorbing
potentials and of large but finite L2 basis sets is necessary not only for conceptual and
numerical reasons but also has an intuitive physical significance. The schema (2.14) describes
the correspondence between the energy limit (ε → 0±) present in (2.12) and the spatial
asymptotic conditions imposed on the solution. A negative imaginary potential, corresponding
to the (−iε) case, absorbs the outgoing plane waves and, by eliminating as much as possible any
reflections, makes the incoming parts vanish. A positive imaginary potential, corresponding
to the (+iε) case, has an opposite effect.

The generalization of the wave operator concept and more particularly the possibility of
constructing active spaces including scattering states, molecular resonances and bound states
is thus closely related to the use of the OPM. By giving a similar status to these various
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types of state the OPM removes the restrictions of Møller’s theory and makes it possible to
use relatively small active spaces to describe processes such as scatterings with temporary
trappings or half collisions induced by electromagnetic field-matter interactions. One can then
generalize the definition given by equation (2.7) to include the case of a finite-dimensional
model space. Following the notation used by Wyatt and Iung (1996), we define S as the
subspace generated by the set of N eigenvectors |φn〉 which play an important role in our
problem (the crucial selection of this subspace will be analysed latter). We will now define
So as the model space generated by the zero-order description of the states |φn〉. These states
|φn〉o, which are eigenvectors of (Ho − iVopt), form a biorthonormal basis set characterized by
the projection operator Po. We can then define a third basis set {|n〉o, n = 1, N} formed by
the projection into the model space of the eigenvectors |φn〉:

|n〉o = Po|φn〉 (2.15)

where the associated biorthogonal basis set functions |m̄〉 satisfy

o〈m̄|n〉o = δnm and Po =
N∑

n=1

|n〉oo〈n̄|. (2.16)

A new operator can then be defined by analogy with the Møller operator (equation (2.7)),
but now for a case in which the continuum is discretized using a large basis set and a model
space of dimension N has been selected. The appropriate definition modelled on (2.7) is

� =
N∑

n=1

|φn〉o〈n̄|. (2.17)

This operator can be applied to the evolution operator (equation (2.9)) in order to isolate
the active space and to confine the dynamics to it. A crucial point of this operation is the
selection of the model space So; this and other questions will be analysed in more details in
section 3, where the problem of a rigid rotator subjected to a strong laser field will be used as
an example.

Before proceeding further with the theoretical development, it is perhaps worthwhile
to take stock of the consequences of the reasoning which has been used in the preceding
discussion. The first step was to express the traditional Møller wave operator (which
was originally used in scattering theory) in a spectral sum form which involves the use of
biorthogonal basis functions. The second step was to study systems which can have bound
states below their continuous spectrum and to introduce the use of finite representations which,
when conjoined with the use of optical potentials, could give a reasonable representation of
the full spectrum of systems which have both discrete and continuous spectra, as well as
possible resonances. This second step reduces the theoretical apparatus employed to that
associated with the theory of large matrices with elements which are complex numbers. When
the spectral sums appearing in the Møller wave operator are replaced by those related to the
finite representations and when the finite basis is further partitioned (as described above) in a
manner which is based on that used in part I of this review, then the nature of the spectral sums
is changed to such an extent that the resulting modified wave operator is essentially one of
the Bloch type which was studied in part I, except that the matrices to be treated are complex
rather than real. Thus, although the use of the concepts of Moller provides a useful guide, it
turns out that (just as for the stationary case treated in part I) they are not totally indispensable
in the construction of the theoretical tools required. As the discussion proceeds it will also
emerge that the use of the Floquet theory and of other mathematical procedures often permits
the use of a static theory to describe a dynamical system; this means that the resemblance of
the computational methods used to those described in part I becomes even more marked.
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2.3. The general case of a time-dependent Hamiltonian

Many interesting experiments in molecular dynamics are described by using explicitly time-
dependent Hamiltonians. This is the case for the theory of the field-matter interactions
produced by intense laser pulses, for mixed quantum-classical treatments in which some of
the coordinates are described by classical mechanics, or more simply whenever interaction
representations are introduced to treat purely quantum mechanical systems.

For such cases the stationary wave operator theory is inappropriate and the introduction of
a new concept is necessary to project the dynamics into a reduced space. This can be achieved
in two different ways, both of which take into account the finite dimension of the model space
and the finite duration of the interaction (and consequently its non-adiabatic character). The
first way is to introduce into the Møller formalism, the states belonging to the model space
So in place of the single state |E, n〉 and to use the evolution operator U(t, 0) operating on a
finite interval in place of its adiabatic limit U(0,−∞) (cf equations (2.3), (2.4)). The second
way is to take this same operator U(t, 0) in place of the projector P onto the target space in the
stationary Bloch expression � = P(PoPPo)

−1 (which was discussed in section 2.4 of part I
of this review). The two procedures lead to the same expression;

�(t, 0) = U(t, 0;H) × (PoU(t, 0;H)Po)
−1. (2.18)

This time-dependent wave operator was presented in the framework of an adiabatic theorem
approach in the paper of Jolicard and Grosjean (1985) and four years later in the form (2.18)
by Jolicard (1989). More detailed and pedagogical presentations can be found in Jolicard
(1995) and Jolicard and Killingbeck (1995a).

The analysis of the time-dependent wave operator � defined by equation (2.18) and its
application to describe the evolution of quantum systems require the derivation of a differential
equation satisfied by �. Because of the use of a finite (although large) L2 representation of H,
this derivation essentially takes a matrix form. Moreover, the introduction of the projection
operators Po for the model space and Qo for the complementary space represents each matrix
A of the full space as the sum of four components: PoAPo, PoAQo,QoAPo,QoAQo. For
example, the matrix PoU(t, 0;H)Po in equation (2.18) is a priori an No × No matrix with an
No ×No inverse. This inverse, when augmented by three zero blocks to form an N ×N matrix
in the full space, is denoted by(PoU(t, 0;H)Po)

−1 in a slight abuse of the usual conventions
(as was discussed in section 2.4 of part I of this review). By using the basic properties of the
projection operators, (e.g., PoPo = Po, PoQo = 0), one can finally transform equation (2.18)
into:

U(t, 0;H)(PoU(t, 0;H)Po)
−1 = Po + QoU(t, 0;H)Po(PoU(t, 0;H)Po)

−1 (2.19)

on remembering that in the full space Po is represented by a unit No × No matrix plus
three appropriate zero blocks. Starting from equations (2.18) and (2.19), one can write, in
conformity with the stationary Bloch wave operator formalism of part I,

�(t, 0) = Po + X(t, 0) (2.20)

where � induces transitions from the model space to the full space and the off-diagonal part
(X ≡ Qo�Po) (called the reduced wave operator) induces transitions to the complementary
space exclusively. The analogy with the stationary formalism can be used to derive the
equation which defines �. The principal aim of the Bloch theory in the eigenvalue problem
is to generate a matrix transformation which suppresses the couplings between the model
space and its complementary part and which transforms H in So into a more tractable effective
Hamiltonian H eff . A matrix form of this approach has been applied to matrix eigenvalue
problems by Coope (1970) and Killingbeck and Jolicard (1992) and was described in



Topical Review R423

section 2.4 of part I of this review. In the time-dependent case the couplings are changing with
time and a single transformation will not serve to decouple the two spaces permanently. It
turns out that in principle one can construct a sequence of transformations which will keep on
maintaining this decoupling and will involve a time-dependent effective Hamiltonian H eff(t).
In other words, we presume the existence of an No × No effective Hamiltonian, such that at
each time we have

PoU(t + dt, t;H)Po = U(t + dt, t;H eff). (2.21)

To derive this last expression one can use an interaction representation, based on the identity

H =
(

H − ih̄
∂X

∂t

)
+ ih̄

∂X

∂t
. (2.22)

This representation with respect to ih̄ ∂X
∂t

is clearly non-trivial, since X is the unknown quantity
in the problem. Because of the particular block form of ∂X/∂t , the Dyson expansion of the
associated evolution operator has a very simple form. The second and higher order terms are
equal to zero, owing to the presence of products such as PoQo. Thus we have

U(t, 0; ih̄∂X/∂t) = 1 + X(t, 0) (2.23)

so that the basic equation of the interaction representation formulation leads to

U(t, 0;H)Po = (1 + X(t, 0))U(t, 0;H eff)Po

with

H eff(t) = (1 − X(t, 0))

(
H − ih̄

∂X

∂t

)
(1 + X(t, 0)). (2.24)

Finally, the condition QoH
effPo = 0, which specifies the unknown term X, expresses the

evolution issuing from the subspace So as a product of two successive evolutions

U(t, 0;H)Po = �(t, 0)U(t, 0;H eff) = (Po + X(t, 0))U(t, 0,H eff)

with

H eff(t) = PoH(t)�(t, 0) (2.25)

and leads to the non-linear differential equation which is obeyed by the time-dependent wave
operator (Jolicard 1989).

ih̄
∂X(t, 0)

∂t
= Qo(1 − X(t, 0))H(t)(1 + X(t, 0))Po. (2.26)

Thus the term on the right, which is zero for the stationary case (see part I), plays the role of a
driving term in the time-dependent case. The derivation of the equation of motion given above
using the intermediate representation generalizes the elementary one given in the appendix of
part I of this review for the case of a one-dimensional model space.

Definition (2.18) of �(t, 0), based on the evolution operator, involves a purely time-
dependent point of view. Alternative expressions can be derived using an extended Hilbert
space formalism which introduces the time as a supplementary variable. These different
aspects of the theory and their applications to the description of inelastic and photoreactive
interactions are analysed in sections 4–8.

3. The partitioning technique and its application to inelastic and
photoreactive processes

Section 2.2 has presented as a possible application of the Bloch wave operator theory
the integration of the equations of motion for a quantum system which is driven by a
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time-independent Hamiltonian and which has a well-specified initial state �(t = 0) (cf
equation (2.13)). For these applications, the efficiency of the effective Hamiltonian theory
directly depends both on the nature of the investigated system and on the representation which
is used. The Møller wave operator, the definition of which involves the exact scattering
solution, would suffice to describe the dynamics with a one-dimensional active space if one
identifies this scattering wavefunction with an element of a non-orthogonal basis set, but
one cannot expect the same simplicity for a system which is localized in time and which is
described on a zeroth-order basis set of large dimension. We will thus analyse in this section
how the stationary Bloch operator can be used to reproduce this localized dynamics. The
theoretical developments are illustrated by specimen calculations describing photodissociation
and inelastic transitions due to intense cw laser fields. An introduction first explains how the
theory can take advantage of the periodicity of the field-matter coupling and so transform the
semi-classical time-dependent problem into an equivalent time-independent problem.

3.1. The field-matter interaction: the choice of the gauge

Before any further analysis, it should be noted that the effective Hamiltonian approach is never
completely rigorous for time-dependent problems. In some cases it is not even appropriate;
for instance, processes which are chaotic and which spread out to involve a large part of
the phase space are generally not describable by projection methods using a small active
space. Nevertheless, a suitable choice of representation sometimes makes the spectra of the
unperturbed system treatable by the use of projection techniques and can thus facilitate the
treatment of strongly perturbed systems. This is the case for both photodissociation and
photoionization processes, although they involve different non-perturbative mechanisms.

By using a quantum description of the field-matter interaction, the relaxation of a molecule
submitted to a cw laser field is described by using equations (2.9) and (2.10) with

H = H mol + H rad + V. (3.1)

The analysis of equations (2.11) and (2.12) in the framework of these dissipative processes
gives the usual result that the description of the permanent regime predominantly involves
poles of (z − H)−1 which are situated near the real axis but on higher Riemann sheets and
which are revealed by the addition of an optical potential. The relatively small number
of these resonances induced by the field-matter interaction explains why one can describe
the essential features of the dynamics using a small active space (in the permanent regime,
i.e. for times beyond the short temporary regime corresponding to the turning on of the
interaction).

Different approaches have thus used partitioning techniques, from the Möwer partitioning
(Möwer 1966) to the artificial channel model (Shapiro 1972, Bandrauk and Turcotte 1985),
which transform the half-collision problem into a true collision problem. These techniques
create an energy dependence of the transition operator T (E) which is neglected in the
final solution and which is a symptom of the impossibility of finding an exact solution by
partitioning. The Bloch wave operator theory has been used in this context more recently
and for similar reasons leads to an energy dependence of the effective Hamiltonian which is
also neglected. Nevertheless, it makes it possible to select the active space in a self-consistent
manner and to control the degree of approximation which is introduced. We will now analyse
these points more closely, first indicating how the stationary approach can be adapted to the
semi-classical description of the electromagnetic field and of the matter-field interaction. A
simple photodissociation process will be used as an illustration.

In the intense field regime one does not use a quantum description with a time-independent
Hamiltonian (equation (3.1)) but rather uses a more appropriate semi-classical description.
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Using the dipole approximation and the length (electric field) gauge interaction term 
µ × 
E,
the Hamiltonian can be written as

H(θ + ωt) = Ho(q, r) − 
µ(q, r) 
Eo cos(θ + ωt). (3.2)

The field-matter interaction is assumed to be turned on at t = 0. The initial phase θ appears as
a parameter. q denotes the various internal vibration-rotation degrees of freedom and r is the
interfragment axis coordinate. By writing equation (3.2) we have assumed that a particular
chemical bond breaks down preferentially, with an associated coordinate r which serves to
describe the reactive dynamics when the two fragments separate. For the diatomic molecules
H2 and SiO used as examples in this review the definition of r is straightforward. Jolicard
and Atabek (1990) discussed the case of the CH3NO2 molecule, for which the dissociation
occurs preferentially along the CN axis, and used the distance between the centre-of-mass of
the CH3 and NO2 fragments as the interfragment coordinate R. More complicated situations
involving several interacting continua or dissociations which produce a larger number of
fragments can also be investigated by introducing an optical potential on each interfragment
axis.

The choice of the gauge is a central point for the problem of multiphoton inelastic
transitions and ionization/dissociation processes. A general discussion concerning this choice
can be found in Reiss (1979, 1980). The electric field gauge which is used here exhibits some
defects in the strong field regime: crossed vector-potential terms occur in this gauge and
prevent separation of the Schrödinger equation into centre-of-mass and relative-coordinate
equations. Another defect relates to the asymptotic behaviour of H. In the generalized
Floquet treatment of photoreactive processes (Peskin et al 1994a), the asymptotic Floquet
channel functions, which play a central role, are proportional to complex scaled outgoing
waves when the Hamiltonian satisfies the asymptotic condition, i.e. when both the time-
dependent and the time-independent potential terms vanish asymptotically. Unfortunately
the asymptotic behavior of the Hamiltonian is gauge dependent. The length gauge and
the momentum gauge Hamiltonians, for example, do not satisfy the asymptotic conditions,
whereas the acceleration gauge Hamiltonian does. This question has been analysed in detail
by Peskin et al (1994a) in the framework of the (t, t ′) theory. It has been proved that one
can use the Hamiltonians which do not satisfy the asymptotic conditions and nevertheless
obtain the Floquet channel functions after carrying out complex-scaled transformation such as
the Kramers–Henneberger transformation (Henneberger 1984). These transformations then
make the use of these different gauges partly equivalent, since the defects introduced by
incorrect asymptotic behaviour can be corrected a posteriori. Other defects exist (e.g., a
relatively slow rate of convergence with respect to the Floquet basis size) when the length
gauge is used, but they do not have any crucial importance in our case. Our aim here is
to analyse the improvement introduced by an effective Hamiltonian theory in the treatment
of photoreactive processes induced by time-periodic Hamiltonians. From this point of view,
equation (3.2) is representative of this situation and the conclusions concerning the advantages
of the Bloch formulation are undoubtedly robust and independent of the choice of the
gauge.

3.2. Quantum formulation, Floquet formalism and semi-classical point of view

The Hamiltonian (equation (3.2)) is time dependent, in contrast to the purely quantum
version (with a quantized field) of equation (3.1); thus the stationary wave operator cannot
a priori be used to partition the Hilbert space. Nevertheless, one can take advantage of the
periodicity of the Hamiltonian to transform this time-dependent approach into an equivalent
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time-independent infinite dimensional Floquet eigenvalue problem (Shirley 1965) and to
generalize it to the complex quasi-vibrational energy (QVE) formalism by including finite
L2 representations of the molecular continua (Chu 1981). These representations can use
absorbing boundary conditions produced by the optical potential −iVopt.

Guérin and Jauslin (2003) have analysed the connections between the Floquet formalism
and the quantum and semi-classical points of view for non-dissipative systems. Their approach
to the problem will be used here as a starting point to introduce our developments.

The Floquet Hamiltonian is defined in an enlarged Hilbert space

K = H ⊗ L2(dθ/2π) (3.3)

where L2 denotes the space of square integrable functions on the circle of length 2π and
H the molecular Hilbert space, which is assumed to be finite, since the optical potential is
introduced to discretize the continuum associated with the radial variable r. The eigenstates
{|α〉} of Ho − iVopt, plus a complete time Fourier basis {n}, with 〈θ |n〉 = exp(inθ), form a
product basis which spans this extended (spacetime) Hilbert space K. The period θ = 2π

corresponds to an optical period T = 2π/ω for a continuous laser field in the usual Floquet
theory. It will be equated in the generalized Floquet approach (see section 7 of this review) to
the full duration of the laser pulse. On the enlarged Hilbert space the Floquet Hamiltonian is
defined as

HF = H(θ) − iVopt − ih̄ω
∂

∂θ
(3.4)

where HF is 2π periodic as a consequence of changing the variable from t to θ .
The introduction of the optical potential allows dissipative systems to be treated using

finite representations while retaining the validity of the Floquet theorem. Similarly, Moiseyev
(Moiseyev and Korsch 1990, Moiseyev et al 1990) introduced the complex-scaled Floquet
Hamiltonian and described the ionization/dissociation of a molecular system by using a single
quasi-energy resonance.

The advantage of the Floquet Hamiltonian (equation (3.4)) arises from the fact that it is
time independent and that the dynamics on K and H are essentially identical. More precisely,
the propagator in the K space has the simple expression

UHF
(t, to) = e−iHF (t−to)/h̄ (3.5)

and a direct relation exists between UHF
and the propagator U(t, to; θ) associated with

H(θ + ωt) (equation (3.2)) which is a solution of ih̄∂/∂tU(t, to; θ) = H(θ + ωt)U(t, to; θ) in
the standard H Hilbert space;

τ−ωtU(t, to; θ)τωto = UHF
(t − to, θ). (3.6)

Here τωt = eωt∂/∂θ is a phase translation operator which acts on the functions ξ of L2 to
give τωt ξ(θ) = ξ(θ + ωt) (Guérin and Jauslin 2003). Finally, the description of the similarity
between the two evolutions is completed by noting the relation between the wavefunctions
(Peskin and Moiseyev 1993),

φ(t) = τωt�(t, θ) = �(t, θ + ωt) (3.7)

where φ is the standard solution in the H Hilbert space and � is the extended wavefunction
driven by UHF

in the K space.
Although the Floquet approach appears essentially as a mathematical device to simplify

the treatment of the dynamics, it can also be used to prove the equivalence of the semi-classical
approach (associated with equation (3.2)) and the purely quantum approach (associated with
equation (3.1)) under some precise conditions in the strong field regime. These ideas, present
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in the pioneering work of Shirley (1965), have been developed more explicitly by Bialynicki–
Birula and Bialynicka-Birula (1976), Bialynicki–Birula and Van (1980) and by Guérin et al
(1997). The proof of the equivalence starts by studying a quantized photon field in a cavity of
finite volume in interaction with the molecule and considers in a second step the molecule and
the radiation in free space by taking the limit: V → ∞ (infinite cavity volume), n → ∞ (large
average photon number), ρ = n/V = Cte (constant photon density). On assuming that the
number of photons exchanged during the field-molecule interaction is very small compared
to the average photon number n, the quantum Hamiltonian (equation (3.1)) is shown to be
identical, up to an additive constant, to the Floquet Hamiltonian HF (Guérin et al 1997)

(H mol + H rad + V ) − h̄ωn → HF (3.8)

and the dressed state dynamics in the tensorial product H ⊗ F of the Hilbert space of the
molecule and the Hilbert space of the photons is shown to be identical to the Floquet dynamics
in the K space.

This double correspondence, first between the semi-classical treatment and the Floquet
treatment, and second between the Floquet treatment and the quantum treatment, establishes
a formal equivalence between the semi-classical dynamics and the quantum dynamics at the
strong field limit. A last question remains nevertheless, since the two dynamical processes do
not occur in the same space. In the enlarged Hilbert space K, the phase θ does not have a
definite value. To recover the semi-classical equation, it is necessary to fix a particular value
of θ , which can be done by choosing the initial condition of the photon field as a coherent
state (see Klauder (1963) and Klauder et al (2001) for more details concerning these coherent
states). At the limit n → ∞, these coherent states correspond, in the phase representation, to
the square root of a δ-function (Guérin and Jauslin 2003)

(φθ0(θ))2 = 2πδ(θ − θ0) (3.9)

and can be represented on the Fourier basis einθ by a uniform distribution.
Having sketched the formal developments which have demonstrated the (intuitively

reasonable) equivalence between different theoretical formalisms, we should emphasize that in
fact it is often not necessary to recover the exact semi-classical result. In experiments the phase
between the molecule and the field is averaged uniformly on [0, 2π ], since many molecules
contribute to the experimental result. It thus seems more judicious to take an initial photon
state which corresponds to this arbitrary phase. This state which implicitly introduces the
phase average has also the advantage of having an elementary representation in the Floquet
basis set, namely: (einθ )n=0. The matrix representation of the Floquet Hamiltonian in the
extended basis set has the elements

〈n, α|HF |m,β〉 = [(Ho − iVopt) + nh̄ω]δn,mδα,β

− 
µα,β × 1

2π

∫ 2π

0


E(θ) exp(i(n − m)θ) dθ. (3.10)

One can express the probability of transition from the initial molecular state |α〉 to the final
molecular state |β〉 after a lapse of time �t (Chu 1989). This probability is averaged over the
relative phase between the field and the molecular state, a condition which is simply obtained
by taking the Fourier state |n = 0〉 as the initial state. The probability is given by

Pα→β(�t) =
∑

n

|〈n, β| exp(−iHF �t/h̄)|0, α〉|2 (3.11)
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or equivalently, by using the complete basis set of quasi-energy eigenvectors (i.e. the
eigenvectors |λ〉 of HF ), by

Pα→β(�t) =
∑

n

∣∣∣∣∣
∑

η

〈n, β|λη〉〈λη|0, α〉 exp(−iEη�t/h̄)

∣∣∣∣∣
2

. (3.12)

In equation (3.12) the use of the optical potential produces a non-Hermitian Hamiltonian and
an associated bi-orthogonal set with the property〈

λ†
α|λβ

〉 = δα,β (3.13)

where the adjoint vectors (solutions of H
†
F |λ†

α〉 = E
†
λα

|λ†
α〉) are the complex conjugates of the

direct eigenvectors:
∣∣λ†

α

〉 = |λα〉∗.
The large dimension of the HF matrix prevents the use of standard algorithms of

diagonalization. A truncation of HF is possible but it produces an ‘edge effect’ which makes
it hard to isolate the quasi-energies Eη which are associated with a single Brillouin zone.
Time-dependent methods such as the time-dependent-complex-coordinate-Floquet method
(Ben-Tal et al 1991) or the complex-scaled-adiabatic-switch method (Ben-Tal et al 1993) have
been proposed to reduce the computational effort to that needed for the propagation of the
Schrödinger equation over one optical cycle. We will now investigate an effective Hamiltonian
procedure to handle the HF eigenproblem.

3.3. The use of projected dynamics in an active space

The exponential form of the evolution operator (equation (3.11)) is appropriate for the
dynamical evolution of a quantum system driven by a localized, time-independent Hamiltonian.
The semi-classical picture of the interaction of a continuous electric field with a molecule is
not normally presented in this context. However, the introduction of a generalized Hilbert
space K, described using a finite L2 representation, with |α, n = 0〉 in place of �(t = 0)

and with HF in place of H, makes possible the treatment of this time-periodic example. In
this section we will simply use the generic term H to designate the time-independent matrix
which drives the dynamics in this finite representation. This notation covers both the case of
equation (2.9) with H and the case of equation (3.11) with HF .

A technique for evaluating the terms appearing in (3.11) involves partitioning the
dynamical space within which the evolution operator acts and then simplifying the relaxation
scheme which is deduced from the Schrödinger equation. The choice of the relevant subspace
and the construction of the effective Hamiltonian which governs the projected dynamics are
both carried out using stationary Bloch wave operator techniques. Intrinsically, we assume
the existence of a reduced model space So spanned by eigenvectors of Ho = Ho(q, r) − iVopt

and of a direct correspondence, via the wave operator, between this space and the active space
S in which the dynamics is concentrated. These spaces are the analogues for the dynamical
problem of the model space A and its associated target space as introduced in section 2 of
part I of this review. The formal definition of the model space and its selection are two central
points which will be treated in detail in this section. Denoting the projection operator of the
model space (which necessarily includes the initial state) by Po, the operator governing the
relaxation issuing from So takes the following form for a time increment �t .

UP (�t) = exp(−iH�t/h̄)Po. (3.14)

If Po and Qo are the projection operators associated with the model space So and its complement
S+

o and P and Q those associated with the target spaces S (also called the active space) and its
complement S+, then the Hamiltonian H and the subsequent relaxation can be decoupled within
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the subspaces So and S+
o by constructing the non-unitary transformation (Jolicard and Grosjean

1991, Jolicard et al 1994)

T = 1 + XP + XQ (3.15)

where XP and XQ are reduced wave operators of the type introduced in part I, except that two
are used, associated with the two subspaces So and S+

o . We set

�P = P(PoPPo)
−1 = Po + XP

(3.16)
�Q = Q(QoQQo)

−1 = Qo + XQ.

Introducing the inverse of the transformation T, namely

T −1 = PoP + QoQ (3.17)

leads to the rigorous equation

UP (�t) = �P exp[−i(PoH
effPo)�t/h̄]PoPPo

+ �Q exp[i(QoH
effQo)�t/h̄]QoQPo (3.18)

with

H eff = T −1HT. (3.19)

The calculation of �Q in the large space S+
o represents a difficult task and equation (3.18)

is tractable only if one neglects the relaxation path through the space S+
o , i.e. if one suppresses

the second term on the rhs of equation (3.18). Inspection of equation (3.18) reveals
the conditions which can justify this approximation. One can distinguish: (i) the case
where the factor QoQPo is very small (This stationary condition supposes a perturbative regime
and leaves out the states which are weakly coupled to the initial state |α, n = 0〉.), (ii) the
case where the dynamical term exp[−i(QoH

effQo)�t/h̄ produces a negligible contribution.
States which, for example, introduce a rapid decay rate, as indicated by negative imaginary
components of the diagonal part of QoH

effQo, belong to this case.
This simplified scheme is completed by introducing the matrix �, with columns which

are the eigenvectors |λ〉 of H in the active space S. According to the Bloch formulation, the
projection Po�Po of � into So is the matrix which diagonalizes PoH

effPo and �P is the
operator which transforms these projected vectors back to the exact eigenvectors:

�Po = �P (Po�Po). (3.20)

Finally, the introduction of equation (3.20) into equation (3.18) and the expansion of PoPPo

as PoPPo = (Po�Po) × (Po�Po)
† leads to the result

UP (�t) = �Po exp[−i(PoE
effPo)�t/h̄](Po�Po)

† (3.21)

where PoE
effPo gives the eigenvalue spectrum of H in the space So.

Equation (3.11) must now be reconsidered. The introduction of the eigenvectors of HF

into (3.21) and its use in (3.11) gives the final expression

Pα→β(�t) =
∑

n

∣∣∣∣∣∣
∑
η∈So

〈n, β|λη〉〈λη|0, α〉 exp(−iEη�t/h̄)

∣∣∣∣∣∣
2

(3.22)

which reveals that the approximations introduced in this treatment simply involve limiting the
exact expansion (3.12) to the eigenvectors |λη〉 of the active space S.

The preceding developments, from equations (3.11) to (3.22) adopted a purely time-
dependent point of view and gave a central role to the evolution operator (equation (3.11)).
However, another point of view can be adopted by performing calculations in the complex
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energy plane and this is the approach principally developed by P Durand in Toulouse. A
Laplace–Fourier transform of equation (2.13) leads to the Green function

φ(z) = 1

z − H
φ (3.23)

where φ(z) is the Laplace–Fourier transform of �(t) associated with the initial condition
�(t = 0) = φ. By assuming, as previously, the existence of a finite model space So

corresponding to an active space S, one includes the relevant information in the resolvent
projected into this model space (Durand and Paidarovà 1998)

1

z − H
Po = �(z)

Po

z − H eff(z)
(3.24)

where the wave operator and the effective Hamiltonian have the following definitions in this
energy space: {

�(z) = Po + Qo

z−H
HPo

H eff(z) = PoH�(z)
. (3.25)

Various observables can be calculated using this decomposition. For example, the state-to-state
probability amplitudes inside the active space are (Durand and Paidarovà 1998)

Uf i(t) = 1

2iπ

∫
C

dz〈φf | Po

z − H eff(z)
|φi〉 exp(−izt/h̄) (3.26)

for a closed integration path C in the complex plane.
This last equation is computationally tractable when the effective Hamiltonian is energy

independent. The aim of the theory is thus to select model spaces which include all the
relevant states within the energy range of interest in order to reduce the energy dependence of
H eff . In the limiting case of a energy-independent effective Hamiltonian, (H eff(z) ≡ H eff) the
transition amplitudes given by (3.26) are identical to those deduced from equation (3.21)
and the time and energy formulations become equivalent. The regions of applicability
of the two formulations are nevertheless different. The time formulation, which has the
advantage of indicating the circumstances which produce a time-independent Hamiltonian (see
equation (3.18)) is better adapted to describe systems exhibiting a large energy dispersion.
The manipulation of energy-dependent quantities is, on the other hand, of great interest
in spectroscopic applications which determine observables such as lineshapes. In a recent
publication Durand et al (2001) show that the theory of the Fano profiles (Fano 1935,
1961), arising from the interaction between an autoionized state and a continuum can be
investigated by a Bloch effective Hamiltonian approach using a two-dimensional model space
(two resonances or a resonance and a quasi-bound state) interacting with a non-structured
quasi-continuum. This approach seems to offer a promising avenue of research for the study
of asymmetric Fano profiles.

3.4. The selection of the active space

The preceding discussion has emphasized the central importance of the selection of the
model space So. A wrong choice induces a strong energy dependence in equation (3.26) and
creates, via the complementary space S+

o , a second transition path which is too important
to be neglected (see equation (3.18)). The selection of So constitutes a central problem in
degenerate perturbation theory in general and the question is even more intricate when the
model space is not just the space into which the reduced quantum information is projected (as
in the eigenvalue problem) but is rather a space representing the active space within which
the dynamics is confined. For the small test matrices treated in part I it was seen that a poor
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(non-perturbative) choice of the model (A) space could be remedied by using sufficiently
robust numerical methods when finding eigenvalues. For the dynamical problem the matrices
involved are very large complex ones and so the initial choice of a ‘good’ model space becomes
crucial.

Various approaches for a proper definition of So have been proposed in the literature. They
include the rotating frame approximation (Whaley and Light 1984), the multitier approach
(Sibert et al 1984), the adiabatic reduced coupled equations method (Voth and Marcus
1986), the low frequency expansion method (Nadler and Marcus 1987) and various artificial
intelligence techniques (Tietz and Chu 1983, Chang and Wyatt 1986, Iung and Leforestier
1992) One of the main drawbacks of the majority of these algorithms arises from the energy
cutoff criterion which is used to reduce the dimension of the active space. The arbitrary
energy cutoff can lead to erroneous results (Iung and Leforestier 1991). From this point of
view the algorithm based on the wave operator formalism is more flexible (Jolicard et al
1994, Wyatt and Iung 1996). To describe this selection algorithm we will assume that the
full Hamiltonian (or the full Floquet Hamiltonian, if one considers the example presented in
section 3) is subdivided into two operators Ho and V , with the zero-order Hamiltonian Ho

being chosen to describe the system in an approximate but reasonable manner.
According to equation (3.22), the active space is composed of eigenvectors |λj 〉 of H

(or HF ) which have a large projection on the initial state, which is denoted by |i〉 in the
present example (our notations introduce a direct state-to-state correspondence between the Ho

eigenvectors |j 〉 and the H eigenvectors |λj 〉). Because of the symmetry of the Hamiltonian,
we can assume a rough proportionality between the amplitude |〈i|λj 〉| and the amplitude
|〈j |λi〉| for each j. In the framework of this approximation the selection procedure is then
reduced to the selection of the largest components of |λi〉 or of the proportional entity �|i〉.
These components can be obtained by using the RDWA recursive treatment, which is based
on the repeated use of the first-order formula for the reduced wave operator, as explained in
sections 4.3 and 5.1 of part I. Such an approach leads to the equations:

� = Po + X with X = lim
N→∞

XN

(3.27)

XN = XN−1 +
∑
β∈S+

o

|β〉〈i|
( 〈β|HN |i〉

〈i|HN |i〉 − 〈β|HN |β〉
)

with

H 0 = H HN = (1 − XN−1)H(1 + XN−1) N > 0. (3.28)

Because of near degeneracies, some of the X elements diverge. To overcome this problem, all
the partial contributions XN

β,i possessing a modulus larger than some upper limit are changed
into new values with modulus smaller than this limit by means of a suitable reduction factor,
as discussed in section 3.1 of part I, which also explained how for poorly converging iterations
the SCM approach can replace the RDWA approach. After a small number Nit of iterations,
a large number of states |β〉 are connected by the RDWA iteration (more precisely, a state |β〉
participates if at least one path |i〉 → |β〉 formed by a sequence of n couplings with n � Nit

exists). The states |β〉 are then reordered such that those having the largest magnitudes of X
are up near the top of the list and finally the model space So, the dimension No of which is
imposed, is constructed by taking the No first vectors.

This procedure, called the wave operator sorting algorithm by Wyatt and Iung, has been
tested with success in the study of overtone spectroscopy and of the dynamics of energy flow
in benzene (Wyatt et al 1992a, 1992b, Wyatt and Iung 1993a, 1993b, Iung and Wyatt 1993).
In this application, a very large primitive space (N ∼ 1011) is reduced to an active space



R432 Topical Review

Figure 1. A schematic representation in the dressed picture of the potential surfaces involved in
the photodissociation of HF and of the states selected to constitute the model space. The field
intensity is I = 1 TW cm−2 and the laser frequency is ω (h̄ω = 0.060 a.u. = 13168.5 cm−1).

Figure 2. The same as figure 1 but for a laser frequency equal to ω′ (h̄ω′ = 0.02914 a.u. =
6395.5 cm−1). The surface number n = −2 is the dressed surface associated with the absorption
of two photons.

of about 106 elements in which algorithms such as the recursive residue generation method
(RRGM) can be used to describe the dynamics.

The two examples which are presented here concern much smaller systems, but
nevertheless reveal the essential features of the method. Figures 1 and 2 relate to a model
used to test the wave operator sorting algorithm for a photodissociation processes. The wave
operator theory and the iterative integration algorithms which are used can use large vector
spaces and non-Hermitian Hamiltonians, and their performance is not affected too adversely
by the increase of the basis size when more realistic systems are treated. The test model
here is a diatomic molecule subjected to a continuous wave laser field. The parameters
selected for the ground potential surface and for the transition dipole moment (equation (3.2))
are those of a modified Stine and Noid hydrogen fluoride Morse function (Stine and Noid
1979, Leforestier and Wyatt 1983). The two figures show schematic representations in the
dressed picture of the potential surfaces, for the dressed states which actually participate in
the photodissociation. In each case the initial state is |v = 0, n = 0〉, the laser intensity
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Figure 3. The transition probability PJ=0→J=1 as a function of time in laser field periods units.
The continuous line corresponds to an exact integration of the Schrödinger equation. Dotted and
dashed lines correspond to model spaces of sizes (No = 11) and (No = 17) selected with the wave
operator theory.

Figure 4. The same as figure 3 but with model spaces of sizes (No = 11) and (No = 39) based
simply on energy windows.

is 1TW cm−2 and the active space dimension is arbitrarily taken equal to 12. In figure 1,
the laser frequency (ω = 0.060 a.u.) produces a direct transition from the ground state to
the continuum. In figure 2, the laser frequency (ω = 0.02914) is tuned to the frequency of the
bound–bound transition (v = 0 → v = 2). The results show that the selection algorithm is
not limited by any criterion based solely on energy. It selects not only states of the continuum
which are in near resonance with the initial state but also (sometimes with a greater priority)
bound states of the adjacent blocks (n = −1, n = −2). This choice of off-resonance bound
states is physically understandable, since the photodissociation process principally takes place
in the potential well, where the bound states mainly suffice to give a complete basis set.

The pertinence of the selection process is clearly shown in the second example,
which involves the inelastic transitions of a rigid rotator subjected to a strong laser field.
Figures 3 and 4 correspond to a pure quantum description (see equation (3.1)) of a rigid rotator
corresponding to the HF molecule (h̄B = 21 cm−1, µ = 1.91 Debyes) subjected to an intense
electromagnetic field with an intensity of 1 TW cm−2 and frequency ω (h̄ω = 1500 cm−1).
The interaction between the field and the rotator is represented by using a product basis
|J,m; n〉 of 220 states, 20 rotational states 0 � J � 19 and 11 field states: −5 � n � 5.
Figures 3 and 4 compare the probability of transition PJ=0→J=1 obtained by integration of the
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Schrödinger equation in the full space with results obtained using an effective Hamiltonian
in reduced model spaces. When a selection process is used within the wave operator theory
(figure 3), the results are of high quality after a large number of optical cycles, even when
using small model spaces (No = 11, No = 17).

By contrast, the use of a basis set corresponding to an energy window centred on the
initial state introduces phase errors after a few optical cycles, even when using larger model
spaces (No = 11, No = 39) (figure 4). This serves to illustrate the point made previously that
the wave operator selection process is more flexible and general than one which is crudely
based on energy criteria.

4. Temporal analysis of the time-dependent wave operator

The two equations (2.25) and (2.26) are the basic equations needed for the development of
the time-dependent wave operator theory. Interesting and sometimes original information
concerning adiabatic and non-adiabatic transport mechanisms in time-dependent perturbation
theories is implicit in these equations and will be exploited in a discussion of inelastic and
photoreactive interactions in section 7. As a first step it is useful to study some properties
of the wave operator �(t, 0) and in particular its relationship in the adiabatic limit with the
stationary Bloch wave operator.

4.1. From the time-dependent wave operator to the stationary one

A preliminary inspection of (2.25) reveals that the term U(t, 0;H eff) describes a first evolution
step within the active space So, while the off-diagonal part of the second acting term
(involving X) describes a transition from So to the complementary space without any reverse
path (a reverse path would involve PoUQo). One can then expect, by a good choice of So,
to concentrate into the first term U(t, 0;H eff) the fast evolution which the time-dependent
Hamiltonian produces between states which are in near resonance or are strongly coupled,
separating out in this way the fast and the adiabatic evolutions. In other words, we approach
the problem of the relationships between the time-dependent wave operator and the Bloch
wave operator at the adiabatic limit. This problem has been analysed (Jolicard 1989,
Jolicard and Austin 1991a) by adapting the RDWA method for this time-dependent problem.
At the Nth order of this time-dependent RDWA one has


U(t, 0;H)Po = (Po + XN(t, 0))U(t, 0;HN)Po

HN = (1 − XN)H(1 + XN) − ih̄ ∂XN

∂t

XN = R−1
(

1
ih̄

∫ t

0 R
(∑N−1

n=0 QoH
nPo

)
dt ′
) (4.1)

where HN=0 is the initial H matrix and R is a phase adding operator defined by

R(A) = exp

(
i

h̄

∫ t

0
Hdiag dt ′

)
A exp

(
− i

h̄

∫ t

0
Hdiag dt ′

)
. (4.2)

In equation (4.1) the term −ih̄∂XN/∂t is obtained by using

−ih̄
∂XN

∂t
= [XN,Hdiag] +

N−1∑
n=0

QoH
nPo. (4.3)

The adiabatic limit is reached by introducing the perturbation V ≡ H − Ho adiabatically
between the times t = −∞ and t = 0 according to the equation

H(t) = lim
γ→0+

(Ho + V exp(γ t)). (4.4)
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In this limit the frequencies which characterize the inelastic transitions So → S+
o are large

compared to the frequencies ωp appearing in the spectrum of the time-dependent perturbation
V (t):

|Hjj − Hαα|
h̄

� ωp (4.5)

where j labels states of the model space and α states of the complementary space. Fortuitous
exact resonances Hjj = Hαα can destroy this inequality, but this difficulty is easily overcome
by incorporating the offending resonant state α in the model space.

The time integrals which are present in the expression for XN in equation (4.1) are
calculated using the identity

I (t, ω) =
∫ t

−∞
F(t ′) exp(iωt ′) dt ′

= exp(iωt)

[−i

2π
P
∫ +∞

−∞

f (ω′) exp(−iω′t)
ω − ω′ dω′

]
+

1

2
f (ω) (4.6)

where f designates the Fourier transform of F and P the Cauchy principal part. In the adiabatic
limit (ω → ∞) equation (4.6) leads to the result

limω→∞I (t, ω) = exp[i(ωt − π/2)]
F(t)

ω
. (4.7)

Introducing this result into the expression for X1 in equation (4.1) and subsequently into those
for XN, (N > 1), leads to the approximation

X �
∑
α∈S+

o

∑
j∈So

|α〉〈j |
(∑

n〈α|Hn|j 〉
Hjj − Hαα

)
. (4.8)

This result is nearly identical to that for the RDWA series which gives the reduced Bloch
wave operator at time t (i.e. with H = H(t)). One then observes that, at the adiabatic limit,
the time-dependent wave operator is transformed into a temporal succession of instantaneous
Bloch wave operators. The only time dependence surviving in equation (4.8) is the adiabatic
one included in Hn(t). The introduction of (4.8) into (4.3) then gives the consistent result
∂XN/∂t = 0 associated with the static case.

Finally, by assuming that the RDWA series converges in the limit N → ∞, our
development makes the lhs of equation (2.26) vanish and transforms this equation into the
equation defining the reduced Bloch wave operator. By introducing the adiabatic evolution
parameter s = limγ→0+ exp(γ t),−∞ � t � 0 (see equation (4.4)), and the time duration T
of the perturbation, one can then summarize this result by the formal equation:

lim
T →∞

UT (s)(PoUT (s)Po)
−1 = P(s)(P (0)P (s)P (0))−1. (4.9)

This last equation is a generalized form of the adiabatic theorem (Messiah 1964). It involves
the wave operator �(s) whereas the usual adiabatic theorem treats a single eigenstate |λi(s)〉
which is assumed to be well isolated during the evolution. In the present formulation it is
not supposed that the states of the model space are individually isolated during the evolution
but more simply that the eigenvalues of the model space do not cross the eigenvalues of the
complementary space during the evolution (Nenciu 1980, Nenciu and Rasche 1992). Thus a
constraint on individual states is replaced by a less onerous constraint on two groups of states.

The wave operator formalism should nevertheless be used with caution because of the
intermediate normalization condition satisfied by �. Consider, for example, the adiabatic
evolution of a state which begins as an eigenvector |i〉 of Ho at t = −∞. If the eigenvalue is
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isolated during the evolution, then the adiabatic evolution produces a series of instantaneous
eigenvectors.

U(t,−∞;H)|i〉 = |λi(t)〉 exp(iφ(t)) (4.10)

where the phase φ(t) is the sum of the dynamical phase and the Berry geometrical phase
(Berry 1984, 1990)

The same evolution, when described by the full wave operator formalism, leads to the
result

U(t,−∞;H)|i〉 = �(t)|i〉 exp

[
1

ih̄

∫ t

−∞
H eff(t ′) dt ′

]
. (4.11)

As the definition of � imposes the constraint 〈i|�(t)|i〉 = 1 at any time, it might seem
that the unitarity of the evolution operator is not preserved. In fact, � is a non-unitary
transformation which generates complex effective Hamiltonians. At the adiabatic limit, the
complex contribution (Im(H eff)) tends to zero but still gives a finite integral over the interval
] −∞, t] (Jolicard and Grosjean 1985); this produces the term exp(1/h̄

∫
Im(H eff) dt ′) which

imposes the unitarity. The demonstration of the conservation of the norm in equation (4.11)
is not straightforward in the general case. Nevertheless, for a one-dimensional model space,
one has a simple relationship between the wavefunction and the wave operator

�(t) = |�(t)〉〈i|
〈i|�(t)〉 . (4.12)

In this case, the use of equations (2.25) and (4.12) gives for the phase term the result

exp

{
1

ih̄

∫ t

H eff dt ′
}

= exp

{∫ t d

dt ′
ln(〈i|�(t ′)〉) dt ′

}
. (4.13)

This shows that the phase term exactly compensates the intermediate normalization factor
1/〈i|�(t)〉 present in the expression for �(t) (equations (4.11) and (4.12)).

|U(t,−∞;H)|i〉|2 = ‖�(t)〉|2
|〈i|�(t)〉|2

∣∣∣∣exp

(
1

ih̄

∫ t

−∞
H eff(t ′) dt ′

)∣∣∣∣
2

= ‖�(t)〉|2 (4.14)

and that finally the wave operator formulation does not modify the norm of the wavefunction.
The separation between the fast dynamical processes described by the term U(t, 0,H eff)

(cf equation (2.25)) and the more adiabatic contributions described by �(t, 0) is a fundamental
feature of the wave operator theory, with major consequences both for the understanding of
quantum dynamics and for the numerical integration procedures. In the case of a one-
dimensional model space, this feature reveals itself via the presence of a term �(t)|i〉, whose
time variation essentially depends on the perturbation V (t), and also a rapid phase factor
exp

( ∫
Eeff/(ih̄) dt

)
which principally depends on the unperturbed spectrum. This can be

easily understood by considering equation (4.12). The division by 〈i|�(t)〉 on the rhs of this
equation cancels the common phase term present in �(t) and so concentrates into �(t)|i〉 the
smoother relative evolutions of the different components.

The wave operator theory generalizes this case to degenerate model spaces by offering the
possibility of collecting into exp

( ∫
H eff/(ih̄) dt

)
the rapid phase terms (including eventually

exponentially decreasing terms) which are produced by strong and near-resonant couplings
inside So. With a good choice of So all the time dependence is extracted from �, except for
an adiabatic one which is generated by the perturbation itself.

An important feature is that this partition between fast and adiabatic terms, which is
obviously relevant at the adiabatic limit, is maintained even outside the purely adiabatic
regime. Various applications confirm this point by revealing that the Fourier transform of
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�(t) essentially overlaps the spectrum of the perturbation V (t) and does not include the high
frequencies ωjα which characterize the spectrum of the non-perturbed system. These high
frequencies and also the fast evolution which appears inside the quasi-degenerate model space
are introduced by the separated phase term

(
exp

( ∫
H eff/(ih̄) dt

))
. The linearly perturbed

harmonic oscillator is a good illustration of this feature. The Hamiltonian of this analytically
solvable system is

H(t) = Ho + F(t)V =
(

− h̄2

2m

∂2

∂r2
+

1

2
kr2

)
+ F(t)

√
h̄

mω
r. (4.15)

F(t) is an integrable function which is non-zero only for a finite interval of time [0, T ] and the
oscillator of frequency ω is initially in its ground state |i = 0〉. The analytical integration of
the TDSE and the expansion of the solution in the harmonic oscillator basis set gives

�(t) =
∞∑

n=0

cn(t)|n〉 (4.16)

with 


cn(t) = expG(t) exp
(−i

(
n + 1

2

)
ωt
)

(F(t))n√
n!

F(t) = 1
ih̄

∫ t

0 F(t ′) exp(iωt ′) dt ′

G(t) = (
1
ih̄

)2 ∫ t

0 F(t ′) exp(−iωt ′) dt ′
∫ t ′

0 F(t ′′) exp(iωt ′′) dt ′′.

(4.17)

For the same problem, the integration of the wave operator equation (2.26) leads to{
�(t) = ∑∞

n=0 dn(t)|n〉〈i = 0|
dn(t) = exp(−inωt)

(
(F(t))n√

n!

) (4.18)

the effective energy being given by

Eeff(t) = 〈i|H eff(t)|i〉
= h̄ω

2
+

1

ih̄
F (t) exp(−iωt)

∫ t

0
F(t ′) exp(iωt ′) dt ′. (4.19)

The approximation (4.7) is valid not only at the pure adiabatic limit but also as soon as ω is
large compared to the frequencies which are present in the spectrum f (ω′) associated with
F(t). Using this approximation in (4.18) and (4.19) leads to the results

dn(t) � (−1)n√
n!

(
F(t)

h̄ω

)n

(4.20)

Eeff(t) � h̄ω

2
− (F (t))2

h̄ω
.

The expansion coefficients do not include any high frequency phase terms; their time
dependence is simply governed by the coupling term F(t). The high transition frequency
ω is introduced separately via Eeff(t). By contrast, the wavefunction mixes these different
contributions and the expansion coefficients cn(t) of the wavefunction in equation (4.17)
introduce a phase term exp i(−ωt/2 +

∫ t
(F (t ′)/h̄)2/ω dt ′) with a major contribution which

depends linearly on the transition frequency ω.

4.2. The evolutive active space

Equations (4.1) form a self-consistent group of equations which can be used to propagate the
solution of the TDSE. The originality of this approach is that it permits iterative treatments of
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the integration process. When the system manifests a strongly adiabatic character, i.e. when the
time-dependent perturbation evolves slowly within the time scale of the unperturbed system,
the evolving state vector remains trapped in a small active space. This is a favourable situation
for the use of the wave operator approach, which is well able to describe purely adiabatic
time evolutions or even intermediate situations in which the evolution combines rapid changes
inside a small quasi-degenerate active space with an adiabatic evolution between this space
and its complementary space. Similar features are shown by the adiabatic formulation of
Nguyen-Dang (Nguyen-Dang 1989, Nguyen-Dang et al 1991), even though the two theories
are different.

In other cases, the definition of an appropriate active space can be more complicated.
Difficulties can result from the chaotic nature of the system and/or from an inappropriate
choice of the basis set. If, for example, one uses a DVR spatial grid basis {|i〉, i = 1 to N} to
span the whole vector space S, then the initial function commonly has a large set of non-zero
coefficients, the dispersion of which increases during the propagation of the wave packets
under the influence of the kinetic couplings. This is not consistent with the wave operator
formalism, which, to be tractable, should assume that the initial wavefunction |�(t = 0)〉
belongs to a small subspace. Nevertheless, this serious difficulty can be partially overcome by
some simple adaptations.

A first obvious adaptation is to integrate the basic equation (2.26) with the iterative
procedure (4.1) over a small time interval �t , repeating this elementary procedure step by step
on the whole time interval [0, T ].

A second less simple adaptation is to define at each time step a new non-orthogonal basis
{|i ′〉, i ′ = 1 to N}:{|i ′〉 = |i〉 i �= l

|l′〉 = |�(t)〉 (4.21)

where the index l denotes the vector which has the largest modulus |〈l|�(t)〉| in the orthogonal
basis. In this new representation the initial wavefunction for the next step is identical to the lth
basis vector. The model space is thus permanently a one dimensional space. The non-linear
equation which drives the wave operator in this representation is identical to (2.26), but with
a new Hamiltonian

H = B−1HB (4.22)

in place of H. The transformation matrix B and its inverse are, in fact, given by simple
expressions which facilitate a fast recalculation of H at each step:


Bjk = δjk ↔ B−1

jk = δjk for k �= l

Bjl = 〈j |�(t)〉 ↔ B−1
j l = −Bjl/Bll for j �= l

Bll = 〈l|�(t)〉 ↔ B−1
ll = 1/Bll .

(4.23)

This variable representation approach has been tested with success on the 1D propagation
of Gaussian wave packets and on the two-colour IR multiphoton dissociation of diatomic
molecules (Jolicard and Austin 1991b). It generates couplings which involve complex
variables but reduces the amplitudes of the non-diagonal elements and systematically increases
the separation between the diagonal elements.

A third form of adaptation exploits the properties of equations (4.1). It is not necessary to
start the iteration with HN=0 = H , i.e. with XN=0 = 0; the recursion permits the introduction
of an arbitrary initial trial wave operator. This feature is particularly interesting when H
exhibits rapid time modulations of small amplitude as a kind of background noise around
smoothly varying couplings. In such a case one can select relatively large time steps and
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calculate a coarse grained solution with the usual algorithms such as the Chebyshev method
(Kosloff 1988, Leforestier et al 1991) or the Lanczos method (Park and Light 1986), later
using this preliminary result as a trial solution in the Bloch recurrence procedure to improve
the solution.

5. Analyses in an extended Hilbert space and the generalized
Green function approach

In this section we will investigate the integration of the basic equation (2.26) when H(t) is
either periodic or possesses a finite duration T. The interaction of molecules with cw laser fields
or with short laser pulses as well as inelastic molecular collisions (without orbiting effects)
are typical phenomena requiring such a theoretical approach for their description. The basic
equation of motion (2.26) for the time-dependent wave operator is a time evolution equation
within the usual Hilbert space. After the introduction of the Floquet operator HF = H −ih̄∂/∂t

and of a generalized Hilbert space, formed by the product of the usual Hilbert space with the
vector space arising from the time variable t (see section 3), (2.26) can be re-written as

HF (t)�(t) = �(t)H eff
F (t) = �(t)HF (t)�(t). (5.1)

The equivalence between (2.26) and (5.1) is easily verified by working out the two sides of
(5.1), using identities such as Po

∂
∂t

(Po + Q0X(t)Po) = 0 and finally by multiplying the two
members on the left by Qo.

As previously noted, a discretization of the molecular continua can be introduced by using
optical potential techniques. For the new variable t, (0 � t � T ), a box normalization can be
used, since the Hamiltonian is purely T-periodic or is dressed on a finite time interval. Such
procedures transform the rigorous equation (5.1) into an approximate finite matrix equation
in which the time t is a new variable of the extended Hilbert space and is treated on the same
footing as the molecular variables. However, in spite of its form, equation (5.1) cannot be
regarded as an eigenvalue equation, except for the very special situation in which H eff

F is
time independent. As the operator HF is a non-local operator with respect to the time, it is
also impossible to regard this equation as a simple juxtaposition of instantaneous eigenvalue
equations at successive instants. Despite these complications, the theory is sufficiently
flexible to have led to significant progress in the understanding of quantum adiabatic transport
processes.

The feature which is most useful from a calculational point of view is that the fundamental
equation (5.1) of the time-dependent wave operator theory is identical to the fundamental
equation of the Bloch wave operator theory if the Floquet Hamiltonian HF (working in the
generalized Hilbert space) is taken in place of the usual Hamiltonian H.

5.1. The time and the energy points of view

The correspondence between the dynamics described in the usual Hilbert space by H
and that described in the extended Hilbert space by HF has been exploited by different
authors. The (t, t ′) theory of Peskin and Moiseyev (1993), which is closely related to
the Fock–Schwinger proper-time method (Itzykson and Zuber 1980), exploits this similarity
and constructs solutions of the time-dependent Schrödinger equation by using techniques
previously developed for the time-independent one, with applications to multiphoton ionization
processes (Peskin et al 1994a) and to reactive diffusion processes (Peskin and Miller 1995).
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This theory uses the following equation to connect the Schrödinger wavefunction �(t) to the
(t, t ′) wavefunction �(t, t ′) in the extended Hilbert space:

�(t) = �(t ′, t)|t ′=t = [exp{−iHF (t ′)t/h̄}�(t = 0)]t ′=t . (5.2)

This similarity has also been exploited by Durand (e.g., Durand and Paidarovà 1998) in an
original treatment using an energy space representation. By introducing the unit step function
�(t) and the initial wavefunction φ, Durand starts from the evolution equation:(

H(t) − ih̄
∂

∂t

)
�(t)�(t) = −ih̄δ(t, 0)φ (5.3)

which generalizes the Green’s function equations (2.11) and (2.12) to the case of
a time-dependent Hamiltonian. The definition of the square-integrable wavefunction:
φ(t) = limε→0 exp(−εt/h̄)�(t)�(t) and of a partial energy-dependent solution φ(E, t),
corresponding to the use of a delocalized initial function exp(−iEt/h̄)φ instead of δ(t)φ,
leads to the formal solution in energy space:

φ(z, t) = 1

z − HF

φ (5.4)

with z = E + iε. The time-dependent wavefunction φ(t) is then recovered by means of an
inverse Laplace–Fourier transformation.

The analyses made by Durand prove that the function φ(z, t) directly corresponds to the
wavefunction �(t ′, t) (equation (5.2)) of the Peskin–Moiseyev (t, t ′) theory via an inverse
Laplace–Fourier transform. Modifying the dynamical theory to introduce a set of n states φi ,
forming a model space So, allows the transformation of the rhs of equation (5.4) to give the
more tractable expression:

1

z − HF

Po = �(z)
Po

z − H eff
F (z)

with H eff
F (z) = PoHF �(z). (5.5)

In this energy version of the theory one can note, just as in the time version, the similarity
between the Bloch and the time-dependent wave operator equations through the simple
substitution H → HF (compare equations (3.24) and (5.5)). In fact, equation (5.1) is perfectly
equivalent to the group of equations (5.4) and (5.5). Nevertheless, the choice of which point of
view to adopt is not entirely arbitrary. The present formalism is aimed at the study of processes
involving time-dependent Hamiltonians for which the total energy is usually not conserved.
In the case of large dispersions, it is better to adopt the time-dependent point of view and to
integrate equation (5.1), despite the attractive simplicity of equation (5.5). The integration of
(5.4) and (5.5) is, in fact, a considerable task when the energy dispersion generated during the
evolution process is large.

There are, however, some specific problems for which a time-independent approach is
appropriate. Scattering processes occurring over a finite time interval [0, T ], with a time-
dependent Hamiltonian for which V (t = 0) and V (t = T ) = 0, can be formally described
using stationary formalisms if one assumes that the molecular system is initially in a stationary
state of Ho, i.e.

eiEt/h̄�(t)|t→0 → φi
Ei

(5.6)

where

Ho(q)φi
Ei

(q) = Eiφ
i
Ei

(q). (5.7)

A total energy E in the extended Hilbert space can be defined in this case and the S matrix
elements can be expressed by using the full Green operator

G(E) = (E − HF + iε)−1. (5.8)
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The S matrix elements are (Peskin and Miller 1995)

Sf,i = δf,i − 2iπ
〈〈
φ

f

Ef
, E − Ef |(HF −E) + (HF −E)G(E)(HF − E)|φi

Ei
, E − Ei

〉〉
. (5.9)

The main problem associated with this L2 formulation of quantum scattering is that a finite
basis set of functions which are computationally convenient for matrix calculations might
be poor at representing the required asymptotic behaviour of the scattering stationary states.
More precisely, the basis functions decay asymptotically to zero when a (DVR) is used, or are
periodic in time when a Fourier basis set is used (Kosloff and Kosloff 1983, Bac̆ić and Light
1989). This is contrary to the required behaviour of the scattering states, which as t ′ → ∞
should only contain the incoming wave exp{i(E − Ei)t

′/h̄} along the time coordinate. These
fundamental difficulties were analysed by Peskin and were overcome by the introduction of
smooth time-dependent imaginary valued boundary operators (Peskin and Miller 1995)

ε(t) = εi(t) + εf (t). (5.10)

In this framework the operator identities established by Seideman and Miller (1992) and
Thompson and Miller (1993) can be used to give a simplified expression for the S matrix:

Sf,i = So
f,i + 2iπ

〈〈
φ

f

Ef
|iε + iεG(E)ε|φi

Ei

〉〉
. (5.11)

An alternative approach is to solve the inhomogeneous Schrödinger equation which includes
the correct asymptotic conditions (Peskin et al 1995).

[E − HF + iε(t)]eiEt/h̄�(t) = iεi(t)φ
i
Ei

+ iεf (t)φ
f

Ef
. (5.12)

In this context the wave operator theory represents a new technique of integration of the
TDSE, and is currently in development; the factorization result described by equation (5.5)
illustrates its potentiality and the simplifications which it can introduce. By directly using
the time-dependent equation (5.1) and exploiting the similarity between this equation and
the Bloch equation for the stationary case one can investigate efficiently the adiabatic
transport mechanisms associated with photoreactive control processes and describe, in a
single treatment, rapid evolutions inside the model space plus transition processes between
this space and the complementary space. Two techniques of integration are investigated in
the following sections. Sections 5.2 and 5.3 introduce an expansion on the complete basis set
of Floquet eigenstates in the generalized Hilbert space and explore the relationship between
the number of eigenstates actually taking part in the dynamics and the time dependence of
the effective Hamiltonian. Section 5.4 generalizes the Green function approach to a situation
involving an explicitly time-dependent effective Hamiltonian.

5.2. Wavefunction expansion using a basis of Floquet eigenstates

The presence of the Floquet Hamiltonian HF (t) = H(t) − ih̄∂/∂t in equation (5.1) suggests
the introduction of a complete basis set for the generalized Hilbert space K (equation (3.3)),
a suitable basis being formed by the Floquet eigenstates {λ} which belong to this space.
The existence of these eigenstates is proved by the Floquet theorem, which assumes that
the perturbation terms are periodic in time. This requirement of time periodicity is not still
rigorously fulfilled in the examples analysed in section 7, i.e. the semi-classical description of
inelastic molecular collisions and of the photodissociation produced by short laser pulses. In
these cases, the perturbation V (t) has the general form:

V (t) =
∑

i

Ai

(
q,

∂

∂q

)
F i(t) (5.13)
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where the terms Ai represent quantum mechanical operators depending both on the quantum
variables q and on the associated momenta −ih̄∂/∂q and F i(t) is a pure time function
introduced by the semi-classical treatment of the collision or by the use of intermediate
representations. V (t) in (5.13) is not periodic. Nevertheless, if one supposes that the
perturbation vanishes at the two boundaries of the time interval [0, T ], i.e. V (0) and V (T ) = 0,
one can regard V (t) as the first cycle of a periodic function with period T. This is, of course,
just a mathematical artefact, with all physical interpretations taking place within the first period
(t � T ). The principal consequence of this procedure is the existence of a complete set of
eigenvectors λη of HF in K = H ⊗ L2(θ/2π) where the period θ = 2π corresponds to the
full duration of the interaction. The eigenvectors obey the equation

HF

(
q,

∂

∂q
, t

)
λη(q, t) = Eηλη(q, t) (5.14)

and satisfy the orthonormality condition (Chu 1989)

〈〈λη|λη′ 〉〉 = 1

T

∫ T

0
dt 〈λη(q, t)|λη′(q, t)〉 = δηη′ . (5.15)

In this section we denote by {j, n} the unperturbed basis consisting of the product of a complete
set of Ho molecular eigenstates {j} and of the Fourier functions {n} with 〈t |n〉 = exp(inθ(t)).
We also assume an arbitrary phase between the initial molecular state and the perturbation by
selecting the state |i, n = 0〉 as initial state. The expansion of the wavefunction |�(t)〉, which
obeys HF |�(t)〉 = 0, leads to the equation

|�(t)〉 =
∑

λ

e−iEλt/h̄|λ(t)〉〈〈λ|i, n = 0〉〉. (5.16)

This result from dynamical theory shows the same apparent simplicity for the expansion of
|�(t)〉 on HF eigenvectors as exists for the case of time independent Hamiltonians. This is
nevertheless only a formal appearance. The time dependence is not only concentrated in the
complex phase terms exp(−iEλt/h̄) but also in the eigenvectors, which are functions of time,
even if |λ(t = 0)〉 = |λ(t = T )〉. Another difficulty comes from the large dimension of the
K space. Equation (5.16) is tractable only if the number of HF eigenstates which effectively
participate in the time development is very small and this is, unfortunately, not a priori the
case. In this equation, a convenient labelling of the Floquet eigenstates |λj,n〉 can be produced
by using the two indices j and n referring to the non-perturbed system. This choice assumes a
state-to-state correspondence between the non-perturbed states (eigenvectors of Ho − ih̄∂/∂t)
and the Floquet eigenstates:

(j, n) ⇐⇒ λj,n. (5.17)

This correspondence is established in the context of a perturbation approach by adiabatically
transforming Ho

F = −ih̄∂/∂t + Ho into HF = −ih̄∂/∂t + H . The introduction of the new
indices into (5.16) leads to

|�(t) =
∑

j

N−1∑
m=0

e−iEλj,m
t/h̄|λj,m(t)〉〈〈λj,m|i, n = 0〉〉. (5.18)

The number of states resulting from the double sum over j and m is thus very large, being
equal to the product of the number of states in the molecular basis and the number of Brillouin
zones selected to represent the time variation. The calculation of so many eigenvectors is too
large a task. One can nevertheless drastically reduce the number of Floquet states by taking
into account the periodicity of the Hamiltonian, which implies the relationships:{〈〈λj,m|i, n〉〉 = 〈〈λj,0|i, n − m〉〉

Eλj,n
= Eλj,0 + nh̄2π/T .

(5.19)
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By substituting equation (5.19) into (5.18) one can remain in the first Brillouin zone, though
from a purely formal point of view the higher Brillouin zones are included in the summation
over m in the following expression:

|�(t)〉 =
∑

j

e−iEλj,0 t/h̄

N−1∑
m=0

〈〈λj,0|i,−m〉〉
N−1−m∑
k=−m

ei2πkt/T 〈k|λj,0〉. (5.20)

Finally, by taking into account the periodic property, 〈n|λ〉 = 〈n±N |λ〉, in L2(dθ/2π) and by
assuming that the number N of Brillouin zones is large enough to suppress any edge effects,
one can write (5.20) more simply as

|�(t)〉 =
∑

j

e−iEλj,0 t/h̄|λj,0(t)〉〈λj,0(t = 0)|i〉 (5.21)

where all the Floquet eigenvectors which contribute belong to the first Brillouin zone. At this
point, the main problem is to discover how many vectors {j} of this zone really contribute
appreciably to |�(t)〉. This question has a double interest because it also concerns the degree
of adiabaticity of the process, e.g., the answer to questions such as: at the final time t = T

does the system remain in the initial state |i〉 or has it spread out over many states |k〉? By
introducing the identity

|λj,0(t = 0)〉 = |λj,0(t = T )〉 (5.22)

in (5.21) one obtains the result

�(t) =
∑

k

ck(t)|k〉

with ck(t = 0) =
∑

j

〈k|λj,0(t = 0)〉〈λj,0(t = 0)|i〉

and ck(t = T ) =
∑

j

e−iEλj,0 T/h̄〈k|λj,0(t = 0)〉〈λj,0(t = 0)|i〉. (5.23)

It is evident by considering (5.23) that the adiabatic situation (i.e. ck(t = 0) = ck(t = T ) =
δk,i) corresponds to a situation for which a unique state |λi,0〉 is present, characterized by the
asymptotic conditions: 〈k|λi,0(t = 0)〉 = 〈k|λi,0(t = T )〉 = δi,k . In contrast, a development
to which several states |λj,0〉 contribute cannot simultaneously satisfy the requirement
ck(t = 0) = δi,k imposed by the initial conditions and the condition ck(t = T ) = δi,k , because
of the presence of the complex phase factors exp(−iEλj,0T/h̄). The degree of degeneracy of the
active space spanned by the states |λj,0〉 is thus correlated with the degree of non-adiabaticity
of the process.

The choice of the model space states is obviously of prime importance. For purely
inelastic molecular collisions the molecular states |k〉 which are eigenstates of Ho are bound
states of the two isolated molecules. In the case of reactive processes scattering states
and shape and Feshbach resonances also participate, but the discretization of the continua
requires the introduction of complex transformations in order to reproduce the non-Hermitian
character of the Hamiltonian when resonance states are considered. In the context of
complex scaling methods, the complex coordinate method (CCM) (Baslev and Combes 1971,
Aguilar and Combes 1971, Simon 1972), together with improved versions such as the exterior
complex scaling method (Simon 1979), the smooth exterior scaling approach (Rom et al
1990) and the complex stabilization method (Junker 1980, Moiseyev 1982) are certainly the
most suitable. Within the framework of these theories, resonance state calculations can be
performed (Moiseyev 1998) by using bound state techniques (Rescigno and Mc Curdy 1978,
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Figure 5. The moduli of a few eigenvectors of the E1�+ potential surface of SiO, i.e. the bound
state (v = 4) and the three shape resonance (v = 15, 16, 17), are compared to the moduli of a
scattering state situated near the resonance (v = 16). The delocalization of this scattering state far
away from the potential well is evident. Note the asymptotic absorption by the optical potential.

Moiseyev and Corcoram 1979), the coupled channel approach (Atabek and Lefebvre 1980)
or even the finite difference boundary value method (Atabek and Lefebvre 1981). The
optical potential technique is another, more coarse grained procedure, which results from
the introduction of an imaginary absorbing potential −iVopt in the asymptotic spatial region.
Its use is not always legitimized (as the CCM is) by rigorous mathematical theorems, but its
implementation is simple and it is able to reproduce the complex nature of the resonance states
on the second Riemann sheet.

The molecular states |k〉 which constitute the model space are in this case the eigenvectors
of Ho − iVopt but the corresponding Floquet eigenstates |λk,0〉 do not contribute equally to the
sum in equation (5.21). One should distinguish between the Floquet eigenstates issuing from
the bound and the resonance eigenstates of Ho − iVopt and those issuing from the states which
discretize the molecular continua. The latter, which in the L2 representation play the role of
the scattering states in an exact description of the continuum, do not contribute significantly
to the model space, except perhaps for very sudden variations of the field envelope. The
reason for this is that equation (5.21) requires that the Floquet eigenstates should have a
non-negligible overlap with the initial state |i〉 at t = 0 in order to participate effectively.
This is well illustrated by figure 5 which refers to the case of the SiO molecule (Jolicard et al
1997).

It is clear from the figure that the scattering states concerned are strongly modified by
the presence of the optical potential and possess a negligible overlap with the bound states.
The optical potential has another effect; it produces large imaginary parts in the eigenvalues
of these modified scattering states. In this way the few scattering states with an overlap with
|i〉 which is not strictly equal to zero have a very small lifetime and cannot contribute to the
permanent regime of the relaxation process.

Figure 6 presents a simplified view of the active spaces in different circumstances. For
a direct transition from a ground surface to an upper structureless surface, an active space
of ultimate simplicity, that of one dimension, is sufficient (case a of figure 6). This is the
adiabatic case as defined previously in the analysis of equation (5.23). No other bound state is



Topical Review R445

Figure 6. Schematic representation of the composition of the active space. The four schemes
correspond to different types of transitions: (a) A direct one photon transition to the dissociative
surface, (b) A multiphoton process produced by an IR laser, (c) An indirect photodissociation
involving a shape resonance, (d) The multiphoton non-adiabatic response to the switching on of
an intense and very short laser pulse

populated at the end of the interaction in this case, but the term ‘adiabatic’ here does not mean
that nothing happens. Although the active space is non-degenerate, a dissipative process is
still involved. It is the imaginary part of Eλi,0 in the phase term of (5.21) which produces the
decreasing of the norm.

When the laser is tuned to a bound state-bound state transition as in IR photodissociation
experiments (see figure 6(b)), the active space includes the Floquet states issuing from the
bound states connected by the laser field. Similarly we may include in the active space the
Floquet states issuing from shape or Feshbach resonances connected by the laser in indirect
photodissociation processes (figure 6(c) ) or those issuing from bound states of the ground
surface in the study of a non-adiabatic response to the sudden switching on of intense laser
pulses (figure 6(d)).

5.3. The effective Hamiltonian as an indicator of the active space size

We now address the problem of the relationship between the number of Floquet eigenvectors
of the first Brillouin zone taking part in the dynamics and the time dependence of the effective
Hamiltonian (Jolicard et al 2003a). In the limiting case where H eff

F is strictly time independent
and the initial active space So is one dimensional, equation (5.1), which governs the dynamics,
turns out to be a single stationary eigenvalue equation. However, such an elementary case
is not attainable, because the definition of �(t) (cf equation (2.18)) would require constant
components 〈i|�(t)|i〉 during the whole evolution in time and such a constraint is inconsistent
with the possibility of identifying �(t), which describes the whole dynamical process, with a
generalized eigenstate. Nevertheless, for some specific time-dependent behaviours of H eff

F (t),
it is possible to approach an adiabatic situation in which only one Floquet eigenvector appears
in the wave operator �(t). We will now briefly indicate how H eff

F (t) serves as an indicator of
the more or less adiabatic character of the evolution in terms of the Floquet eigenstates.

We assume an initial active space So of dimension one with the projector Po = |i〉〈i| and
introduce the effective energy
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Figure 7. Time-dependent trajectory of the complex effective energy Eeff(t) (equation (5.24))
between times t = 35.07 fs and t = 37.49 fs. The resonance energy Eλv=0,n=0 which contributes
principally to the dynamics and the corresponding non-perturbed energy Eo

v=0,n=0 inside the loop
are indicated by the filled diamond and circle, respectively. The energies plotted outside the
loop are Eλv=1,n=−5 (filled diamond) and the corresponding non-perturbed energy (filled circle).
The trajectory is a superposition of a few almost identical loops, consistently with the adiabatic
equation (5.27). The more distant Floquet eigenvectors, which make a negligible contribution, are
not shown.

Eeff(t) = 〈i|H eff(t)|i〉 = 〈i|HF (t)�(t)|i〉. (5.24)

The use of the identities: �(t) = |�(t)〉〈i|/〈i|�(t)〉 and HF �(t) = 0 leads to

Eeff(t) = ih̄〈i|∂�(t)/∂t〉
〈i|�(t)〉 = 〈i|H(t)�(t)〉

〈i|�(t)〉 . (5.25)

Introducing equation (5.21) into equation (5.25) gives the following expression:

Eeff(t) = ih̄
∑

j
∂
∂t

[e−iEλj,0 t/h̄〈i|λj,0(t)〉]〈λj,0(t = 0)|i〉∑
j e−iEλj,0 t/h̄〈i|λj,0(t)〉〈λj,0(t = 0)|i〉 . (5.26)

The adiabatic regime is reached when just a single term, namely λi,n=0, contributes to
equation (5.21) and the indicator of this situation in terms of the effective energy is (see
equation (5.26)) an Eeff of the form

Eeff(t) = Eλi,n=0 + ih̄

〈
i| ∂

∂t
λi,n=0(t)

〉
〈i|λi,n=0(t)〉 . (5.27)

This indicator of the adiabaticity of the process in terms of Eeff is easily visible when the
Hamiltonian is constant over a large time interval. On this interval the eigenstate λi,n=0 is
time independent and the effective Hamiltonian becomes constant and equal to Eλi,n=0 . The
indicator is accurate, since such a behaviour is rapidly washed out even when only a few
eigenvectors λ (with non-degenerate eigenvalues) contribute to Eeff(t).

A second favourable situation, illustrated by figure 7, corresponds to the case of a periodic
Hamiltonian. This figure relates to the photodissociation of H+

2, via an excitation step and a
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dissociation step.

H+
2

(2
�+

g , v = 0, J = 0
)

+ nh̄ωo → H+
2

(2
�+

u

) → H+ + H(1s). (5.28)

This same example will be analysed in more detail later in section 7. The field-matter coupling
between the two surfaces 2�+

g and 2�+
u , namely V (t) = −µ(R)E(t) cos(ωot), is characterized

by the carrier wave angular frequency ωo and by a Gaussian envelope function of the form

E(t) =




εo exp
[− (

t−t1
τ

)2]
for t � t1

εo for t1 � t � t2

εo exp
[− (

t−t2
τ

)2]
for t � t2

(5.29)

with h̄ωo = 0.295868 a.u. = 64935.5 cm−1 (corresponding to a wavelength λo = 154 nm),
with a maximum amplitude εo (leading to an intensity of I = 1012 W cm−2) and with
t1 = (T − To)/2 and t2 = (T + To)/2. In the case of figure 7 the switch on and switch off
times τ are equal to 5 fs and the plateau duration is To = (t2 − t1) = 25 fs. The representation
interval is T = 3000 a.u. = 72.56 fs.

The figure shows the time-dependent trajectory of the complex effective energy Eeff(t) on
the plateau between the times t = 1450 a.u. = 35.07 fs and t = 1550 a.u. = 37.49 fs. On this
plateau the Hamiltonian H(t) = Ho + εo cos(ωot) is purely periodic. One observes an overall
ellipse-like form, obtained as a superposition of a few almost identical closed loops, with the
generalized Floquet eigenenergy Eλi=0,n=0 being located inside the ellipse. This is consistent
with the adiabatic formula for the effective energy (equation (5.27)). The single eigenvector
λi=0,n=0 induces a periodic behaviour in Eeff(t), with a period equal to 2π/ωo which is related
to the periodicity of the terms

〈
i| ∂

∂t
λi,n=0(t)

〉
and 〈i|λi,n=0(t)〉 which contribute to the time

dependence of Eeff(t) in equation (5.27).

5.4. A generalized Green function integration

Both the preceding account of the (t, t ′) theory and the comparison of the stationary and
the time-dependent formulations of the wave operator theory have shown how the treatment
of the TDSE can be drastically simplified by a simple substitution (H → HF ) and by the
enlargement of the Hilbert space to include the time variable. When the perturbation has a
finite time duration and vanishes at the ends of the time interval, our analysis indicates that the
basis set provided by the generalized Floquet eigenstates is a good adiabatic basis, i.e. a basis
which requires only a small number of states for the description of the dynamical process.
In this context, only generalized Floquet states possessing the same energy contribute if the
initial state is an eigenvector of Ho = H(t = 0) and if one assumes rigorous completeness
of the basis and consequently a rigorous description of the continuum. For an initial state
|i〉 × |n = 0〉, this common total energy is simply equal to Ei . Nevertheless, this principle
of degeneracy is rendered inexact by using a finite representation of the time interval [0, T ];
further, an expansion such as (5.18) includes states |λj,m〉 which are not in exact resonance
with the initial state but are simply in near resonance. Another surprising consequence of
this L2(T ) representation relates to the generalized Floquet eigenstates which are resonance
states (e.g., the eigenstates generated from the bound states by the field-matter coupling in the
theoretical description of a photodissociation experiment). The width �j,m of these resonances
is not only, as expected, a specific property of the molecular system and of its coupling with the
field, but also depends on the representation used. More precisely, the product �j,m ×T of the
width and the time interval is a constant. Nevertheless, one recovers the degeneracy principle
in the limit of a rigorous representation of the continuum, since �j,m → 0 when T → ∞.
On the other hand, the apparently surprising dependence of �j,m on T is understandable,
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since exp(−� × T/h̄) is related to the survival probability for the complete interaction (see
section 7.2).

One can partly remove these difficulties by performing a direct iterative integration of
equation (5.1) without the use of an explicit finite representation. For this, we simply assume
that the initial state is �(t = 0) = |i, n = 0〉 and we introduce a corresponding one-
dimensional Hilbert space with projection operator Po = |i〉〈i|. This operator is defined in
the initial Hilbert space but it can be generalized to the extended Hilbert space by using the
definition Po = ∑Nt−1

n=0 |i, n〉〈i, n|. Similarly the projection operator of the complementary
space, which is written as Qo = ∑

j �=i |j 〉〈j | in the usual Hilbert space H, has the generalized

form Qo = ∑
j �=i

∑Nt−1
n=0 |j, n〉〈j, n| in the extended Hilbert space. By multiplying (5.1) on

the left by Qo and by applying the resulting operators to the initial state |i, n = 0〉, one obtains
the result

QoHF |i, n = 0〉 = [XPoHF + QoXPoHF QoX − QoHF QoX]|i, n = 0〉. (5.30)

To separate the diagonal element of HF associated with the initial state one can partition the
first term on the right of equation (5.30) to obtain

XPoHF |i, n = 0〉 = X|i, n = 0〉〈i, n = 0|HF |i, n = 0〉 + XP ′
oHF |i, n = 0〉

with

P ′
o =

∑
n�=0

|i, n〉〈i, n|. (5.31)

After a few algebraic manipulations this gives (Zucconi et al in preparation)

X|i, n = 0〉 = [QoHF − XP ′
oHF ]|i, n = 0〉

〈i, n = 0|HF |i, n = 0〉Qo + Qo(XPoHF − HF )Qo

(5.32)

where 〈i, n = 0|HF |i, n = 0〉 is a simple scalar and where the term on the right of
equation (5.32) should be understood as a product ordered in the following order [〈i, n =
0|HF |i, n = 0〉Qo + Qo(XPoHF − HF )Qo]−1 × [QoHF − XP ′

oHF ]|i, n = 0〉.
Equation (5.32) is not simply a standard Green equation and its integration is not

performable by a simple matrix inversion, since X is also present in the denominator on
the right. A short analysis reveals three main difficulties.

(i) The first comes from the dimension of the unknown reduced wave operator. X = QoXPo

is not a single column but is, in the {|j,m〉} representation, a rectangular matrix with Nt

columns and (No−1) × Nt rows, where Nt is the number of Fourier functions introduced to
span the time interval and No is the dimension of the molecular basis. Fortunately, the time-
dependent terms in HF (t) have a simple structure. The time derivative ih̄∂/∂t is diagonal
in the Fourier basis

(〈
j,m

∣∣ih̄ ∂
∂t

∣∣i, n〉 = nh̄ωδj,iδm,n

)
and the couplings V (t) are such that

all the elements are identical on the same diagonal (〈j,m|V (t)|i, n〉 = f (j, i, |m − n|)).
This particular structure of HF in equation (5.1) generates general periodicity properties
in �(t) and thus in X(t), namely:

〈j,m|X|i, n〉 = 〈j,m + 1|X|i, n − 1〉. (5.33)

It is thus sufficient to calculate only one column of the matrix X, for example, that
corresponding to the initial state |i, n = 0〉, all the others being deduced from this first
one by using equation (5.33). Nevertheless, one has to assume that the non-negligible
components of this reference column are far from the borders of the matrix, in order to
avoid edge effects when using the periodicity rule (5.33).
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(ii) A second difficulty is the presence of the unknown X on the right of (5.32), and
more precisely in the denominator.This feature implies that an iterative method of
solution will be required. Equation (5.32) can thus be solved by forming a sequence:
XN+1|i, n = 0〉 = f (XN) where the iterative rule XN → f (XN) is deduced from (5.32).
The initial value in the iteration is arbitrary, the simplest choice being XN=0 = 0. This
series has a finite radius of convergence, which depends both on the iterative rule used
and on the structure of the matrix HF .

(iii) The iterative procedure is obviously made more difficult by the large dimension of the
matrix QoHF Qo present in the denominator on the right of (5.32).

To handle this last difficulty, one can use a mathematical artefact by introducing a new matrix
H ′ = QoH

′Qo. H ′ is, a priori, a general matrix belonging to the complementary space, but
practical reasons usually require it to be diagonal. Equation (5.32) can then be rewritten in the
form:

X|i, n = 0〉 =
(

1 − QoHF Qo − QoXPoHF Qo − QoH
′Qo

〈i, n = 0|HF |i, n = 0〉Qo − QoH ′Qo

)−1

× QoHF |i, n = 0〉 − XP ′
oHF |i, n = 0〉

〈i, n = 0|HF |i, n = 0〉 − QoH ′Qo

. (5.34)

By using a perturbative development of the first matrix on the right of equation (5.34),
(1 − Y )−1 = 1 + Y + Y 2 + · · ·, one obtains the following equation:

X|i, n = 0〉 = Z + Y × X|i, n = 0〉
with Z = [QoHF − XP ′

oHF ]|i, n = 0〉
〈i, n = 0|HF |i, n = 0〉Qo − QoH ′Qo

and Y = Qo[HF − XPoHF − H ′]Qo

〈i, n = 0|HF |i, n = 0〉Qo − QoH ′Qo

. (5.35)

Using this equation requires only the inversion of diagonal matrices if QoH
′Qo is chosen as a

diagonal matrix. Its integration nevertheless remains complicated because of the dependence
of Z and Y on X. At this point, different procedures of integration can be used. One possibility
is the use of a double loop procedure. An exterior loop (index k) increments the X-dependence
of the terms Y and Z and an interior loop (index n) increments the term X|i, n = 0〉. By this
means, equation (5.35) is transformed into the double series:

Xn+1
k |i, n = 0〉 = Zk−1 + Yk−1X

n
k |i, n = 0〉

with

Zk−1 = lim
n→∞ Z

(
Xn

k−1

)
and Yk−1 = lim

n→∞ Y
(
Xn

k−1

)
. (5.36)

One can also use a more simple single loop iteration:

Xn+1|i, n = 0〉 = Z(Xn) + Y (Xn)Xn|i, n = 0〉. (5.37)

In this case the incrementation step replaces all the terms X present on the right with the values
deduced from the term X|i, n = 0〉 on the left at the preceeding step.

The procedures represented by equations (5.35) and (5.36) or (5.35) and (5.37) thus
permit an original iterative solution in an L2 vector space of a purely time-dependent quantum
dynamical problem. No restriction on the number of time-dependent coupling terms F i(t)

present in equation (5.13) is imposed, although the functions should have non-vanishing values
on a common finite time interval. The integration process gives the wave operator at any time
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by using the Fourier transforms of its components expressed in the Fourier basis. It thus gives
direct access to the wavefunction by using the equation:

|�(t)〉 = �(t) exp

[
1

ih̄

∫ t

PoH(t ′)�(t ′)Po dt ′
]

|�(t = 0)〉. (5.38)

Integration calculations based on this formalism are currently in progress and promising
results have been already obtained by the Besançon group. The main problem is to ensure
the convergence of the iterative process described by equations (5.36) or (5.37). This
convergence depends on the choice of the diagonal matrix H ′ and can be improved by the use
of mathematical devices such as Padé approximants, just as was found for the test calculations
in part I. These different technical aspects are further analysed in section 6.

6. The integration of the time-dependent wave operator equation

The effectiveness of the wave operator formulation directly hinges on the capacity to integrate
the non-linear differential equations which this theory introduces. Two types of approach
can be considered: (i) The integration of the basic differential equation (2.26) in the ordinary
Hilbert space, (ii) the integration of the equivalent equation (5.1) in the extended Hilbert space.
In the second case, the solution proposed in section 5 involved discretizing the time variable
on a finite Fourier basis set. Iterative solution methods then led to equation (5.37), which will
be further analysed in this section. We will first return to equation (2.26).

6.1. The integration of ih̄∂X/∂t = Qo(1 − X)H(1 + X)Po

The equation for the reduced wave operator X(t) is a non-linear equation. This means
that it is not possible to use efficient propagation algorithms such as the Chebyshev scheme
(Tal-Ezer and Kosloff 1984) or the short iterative Lanczos propagation (Park and Light 1986),
which are effective for the linear Schrödinger equation. Nevertheless, the use of a finite-
order differencing scheme leads to expressions which, although more complicated than the
equivalent expressions for the Schrödinger equation, do not require greater CPU integration
time (and can sometimes require less). The reason is that the reduced wave operator X has a
smoother time variation than does the corresponding wavefunction |�(t)〉.

The wave operator approach thus seems particularly well suited for the time integration
of systems controlled by slowly varying Hamiltonians over large time intervals. It can, for
example, be used to solve eigenvalue problems by indirect methods. The indirect methods
involve wave packet propagation and extract the required results from some asymptotic
features of the time-dependent behaviour, e.g., from a relaxation of the eigenstates induced by
imaginary time (Kosloff and Tal-Ezer 1986), from Fourier transform of the wavefunction time
correlation function (Feit et al 1982) or from filter-diagonalization methods (Neuhauser 1990,
1991). In the wave operator approach to the eigenvalue problem, the operator H is generated
from the unperturbed operator Ho by adiabatically switching on the perturbations over a large
time interval. The integration of the subsequent wave operator equation then gives a coarse
grained trial operator for the eigenvalue problem.

The second-order and fourth-order differencing schemes are derived from the symmetrized
expansions (Jolicard and Killingbeck 1995b):

X(t + �t) = X(t − �t) + 2�tX′(t) + O(�t3)
(6.1)

X(t + �t) = X(t − �t) + 2�tX′(t) +
�t3

3
X′′′(t) + O(�t5).
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By neglecting the time derivatives of the H matrix and by applying these differencing schemes
to (2.26), one obtains the following expressions for the first and third derivatives:

X′(t) = [1 − �(t)]C(1)(t)
(6.2)

X′′′(t) = [1 − �(t)]{6[C(1)(t)]3 − 3C(1)(t)C(2)(t) − 3C(2)(t)C(1)(t) + C(3)(t)}
where the C(n) are non-commuting matrices involving n applications of H(t) to �(t):

C(n)(t) = Hn(t)�(t). (6.3)

The propagation schemes arising from equations (6.1) and (6.2) are unitary, conserve norm
and energy and, by preserving time reversal symmetry, are conditionally stable. Nevertheless,
the application of these schemes involves some difficulties when they are used to investigate
adiabatic processes.

We will consider here for simplicity the second-order differencing scheme. Two
conflicting features characterize this scheme. First, it has a stability limit �to = h̄/Emax,
where Emax is the eigenvalue with the largest absolute value of the Hamiltonian H̃ (t) =
(1 − X(t))H(t)(1 + X(t)). If the time step �t exceeds �to, then exponentially diverging
solutions take over. Second, the adiabatic limit requires us to take a large switching time Ts .
The consequence is that the integration requires many time steps to ensure that �t < �to.
Thus there can be an appreciable final error in the phase of the wave operator since for
�t < �to the error which accumulates in the phase is proportional to (�t)3 per time step and
thus to (�t)2 over a fixed time interval t.

For the propagation of non-adiabatic processes the switching time and the number of time
steps can be reduced drastically, but similar difficulties exist when the Hamiltonian introduces
large eigenvalues Emax. Nevertheless, one can improve the scheme by introducing in (6.1) the
modified reduced wave operator (Jolicard et al 1999).

X̃(t) = exp
( i

h̄
D(t)

)
X(t) exp

(
− i

h̄
D(t)

)
(6.4)

where
(
D(t) = ∫ t

0 H̃d dt ′
)

is the time integral of the diagonal part of H̃ (t). This leads, in
place of (2.26), to the new equation:

ih̄
∂X̃(t)

∂t
= [X̃(t),Hd(t)] + exp

(
iD(t)

h̄

)
QoH̃(t)Po exp

(−iD(t)

h̄

)
with

H̃ (t) = (1 − X(t))H(t)(1 + X(t)). (6.5)

This differential equation is integrated between (t − �t) and (t + �t) by assuming that the
components of the matrix H(t) and of the reduced wave operator X(t) both have a smooth
time evolution as compared with that of the phase terms exp(±iD(t)/h̄), and so both can be
treated as constant on the time interval [t − �t, t + �t]. An analytical expression for the
integral is obtained, leading to the new differencing scheme:

X(t + �t) = X(t − �t) exp(−2iω�t) + [QoH̃(t)Po − h̄ωX(t)]

(
exp(−2iω�t) − 1

h̄ω

)
(6.6)

or, equivalently,

X(t + �t) = X(t) +

[
X(t − �t) − X(t) +

QoH̃(t)Po

h̄ω

]
exp(−2iω�t) − QoH̃(t)Po

h̄ω
(6.7)

where we have introduced the compact notations: ωjα = (H̃jj − H̃αα)/h̄ and[
H̃ (t)

h̄ω
exp(−2iω�t)

]
jα

= H̃jα(t)

h̄ωjα
exp(−2iωjα�t).
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The two equivalent equations (6.6) and (6.7) have been derived by using a smoothness
assumption for H(t) and X(t); this is clearly better justified for the high part of the spectrum
(large ω values) than for the low part (small ω values). Nevertheless this approximation, which
has the advantage of partly solving the stability problem associated with the upper part of the
spectrum, also operates in the adiabatic regime, since the introduction of the limit (ω → 0)

in (6.6) leads to the standard second-order scheme: X(t + �t) = X(t − �t) + 2�t
ih̄ QoH̃ (t)Po.

One then obtains an unexpectedly good result even at this unfavourable limit.
In equation (6.7) the rapidly oscillating terms exp(−2iω�t) on their own would

require small time steps; however, these terms are multiplied by a smoothly varying term
[X(t − �t) − X(t) + QoH̃(t)Po/h̄ω]. The time average of these couplings over an interval
�t � 1/ω is consequently negligibly small. To summarize, one can partly solve the stability
problem by using the following final scheme:

(i) A positive boundary frequency ωb is defined, separating the high and low parts of the
spectrum. It is related to the time step �t by requiring that ωb�t � 2π .

(ii) For matrix elements Xjα for which |ωjα| � ωb, equation (6.6) is used to propagate the
wave operator matrix elements from t to t + �t .

(iii) For matrix elements Xjα for which |ωjα| > ωb, the oscillating terms are neglected in
(6.7), giving a result similar to that for the stationary RDWA iterative scheme:

X(t + �t) = X(t) − QoH̃(t)Po

h̄ω
. (6.8)

This procedure has been tested in a calculation of the generalized Floquet eigenstates of the
H+

2 molecule subjected to a Gaussian laser pulse by adiabatically switching on the perturbation
over a large time interval (Jolicard et al 1999). The width of the pulse τ was chosen to be equal
to 140 a.u. (3.386 fs) and the pulse was described in the symmetric interval [−T/2, T /2],
where T was chosen to be 1000 a.u. (24.189 fs). Two field intensities were investigated,
corresponding to 1012 W cm−2 and 2.5 × 1013 W cm−2, respectively.

The procedure transforms the initial stationary problem into an adiabatic time-dependent
one by introducing:

H → (H − QoH̃
(n=0)Po) + QoH̃

(n=0)Po ×
(

t

Ts

− 1

2π
sin(2πt/Ts)

)
. (6.9)

The switching function F(t) = t
Ts

− 1
2π

sin(2πt/Ts) varies from 0 at t = 0 up to 1 at t = Ts .

At t = 0 the zeroth-order wave operator �(n=0) = Po is an eigenvector of the first submatrix
(H − QoH̃

(n=0)Po) on the right of equation (6.9). The reduced wave operator equation of
motion is then integrated on the interval [0, Ts] by using Ntime identical time steps. The result
of this integration is a first-order expression

X(n=1) = X(t = Ts). (6.10)

The procedure of integration can then be repeated since X(n=1) is an eigenvector of
(H − QoH̃

(n=1)Po) with H̃ (n=1) = (1 − X(n=1))H(1 + X(n=1)). Figures 8 and 9 represent, on
a logarithmic scale, a measure of the defect of the calculated wave operator with respect to the
exact eigenvector, namely the quantity:

‖H�(n) − �(n)(PoH�(n))‖. (6.11)

The switching time used was Ts = 5000 a.u. and only 20 time steps of integration were used
in order to reduce the CPU time.

The two figures correspond, respectively, to the weak coupling regime and the strong
coupling regime. Each show five curves which correspond to five values of the factor
δ = ωb�t/h̄, with the symbols �: δ = 0.0, +: δ = 0.1,� : δ = 0.5,×: δ = 1.0,�: δ = ∞.
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Figure 8. A measure of the defect of the wave operator with respect to the exact eigenvector
‖H�(n) − �(n)(PoH�(n))‖ is shown on a logarithmic scale as a function of the iteration order n.
The field intensity is equal to 1012 W cm−2. The five curves correspond to five values of the factor
δ (see the text), namely �: δ = 0.0, +: δ = 0.1,�: δ = 0.5,× : δ = 1.0,�: δ = ∞.
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Figure 9. The same as for figure 8 but with a field intensity I = 2.5 × 1013 W cm−2.

In the low coupling regime, a fast convergence is observed for δ = 0.0, which corresponds
to the use of (6.8) alone. In this low coupling regime, the energy of the initial state Ej=1,n=0

is never in close resonance with that of other states, so that it is possible to use a stationary
approximation such as (6.8) in which the time step has the simple role of gradually introducing
the whole coupling. The poorest results correspond to δ = ∞, i.e. to the use of (6.6) alone.
The reason for this is the use of the very large time step value �t = 250 a.u. and the presence
of states which are strongly coupled to the initial state and which are situated at a distance
of ω ∼ 0.2. For these states the product ω�t is about 50 and the corresponding phase terms
exp(−2iω�t) evidently cannot be described correctly by the integration process.

The most interesting test for this mixed integration scheme arises in the strong coupling
regime, where many intruder states are in pure resonance with the initial state. The exclusive
use of (6.8), i.e. δ = 0.0, or of (6.6), i.e. δ = ∞, produces rapid divergence which are due,
respectively, to resonances (ω = 0) which are inconsistent with equation (6.8) and to large
values of the product (ω�t) in equation (6.6). By contrast, the choice δ = 0.5 imposes a
coherent mixing of these two solutions and produces a slow convergence.
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6.2. The integration of HF � = �HF �

The integration of equation (5.1) was considered in section 5, where an iterative method of
solution was proposed (see equations (5.35) and (5.37)). We will now analyse more closely the
convergence behaviour of the iterative approach and improve some aspects of the integration
procedure.

One can first note that equation (5.35) is the TDSE solution which propagates in time
the wave operator issuing from �(t = 0) = |i, n = 0〉〈i, n = 0| with a one-dimensional
model space. The wavefunction �(t) is then simply obtained by using expression (5.38)
with �(t) = ∑

n exp(inωt)〈n|�. However, one can work directly with the full operator
X by integrating equation (5.1) in a degenerate model space if the size of the model space
is not too large. In this case the integration calculates the periodic Floquet eigenstates
which participate in the wavefunction expansion. The assumption of a small model space is
evidently more easily justified for H than for HF in the extended Hilbert space but even in this
last case one can artificially reduce the dimension of the model space by using a constrained
adiabatic trajectory method. This method, currently being tested on semi-classical collisions
and photodissociation processes, forces the adiabaticity of the processes on a lengthened time
interval by involving asymptotic time-dependent optical potentials and permits a description
of the dynamical processes which is so economical that the use of a single generalized Floquet
eigenvector will suffice. It will be published in a special ‘Gert Billing Festschrift’ issue to
appear in 2004 in J. Phys. Chem. (Jolicard et al in preparation).

The problem is then identical to the problem of the stationary Bloch wave operator
equation (H� = �H�), except that a Floquet Hamiltonian HF which includes time-
dependent absorbing potentials is taken in place of H and the extended Hilbert space is
considered in place of the usual one. In this paragraph we will use the generic term H to
designate equally H or HF .

Starting from (5.1), one obtains after a few algebraic manipulations.

XH eff − H ′X = Qo(H − H ′)X + QoHPo with H eff = PoH(Po + X) (6.12)

where H ′ is an arbitrary diagonal matrix in the complementary space S
†
o.

By projecting equation (6.12) to the left on an arbitrary state |f 〉 of the complementary
space, and by setting E′

f = 〈f |H ′|f 〉, one can derive an iterative integration procedure
described by the equations

〈f |X(n+1) = 〈f |[Z + YX(n)][PoHPo + PoHX(n) − E′f Po]−1

with Z = QoHPo

and Y = Qo(H − H ′)Qo. (6.13)

The iterates arising from the use of equations (5.35) and (6.13) are different, as expected,
since the first corresponds to the TDSE with imposed initial conditions and the second to a
generalized eigenvalue problem (even if the time-dependent potentials impose adiabaticity and
finally give a Floquet eigenstate proportional to the wavefunction). The matrices Y and Z do
not have the same form in (5.35) and (6.13). Nevertheless, the structure of the two equations
is similar and the improvements which are proposed here can be applied to both, i.e. to the
calculation of the Bloch wave operator in a degenerate space or to the construction of an L2

iterative solution of the TDSE.
The first difficulty appearing in the iterative use of (6.13) is the inversion of the matrix

Po(H + HX(n))Po − E′
f Po at each step of the iteration. For this, one can introduce the matrix

T (n) which diagonalizes the effective Hamiltonian at the N th step, namely

(T (n))−1(PoH(Po + X(n)))T (n) = E
(n)
eff (6.14)



Topical Review R455

and then transform equation (6.13) into the new iterative formula

〈f |X(n+1) = 〈f |[Qo(H − H ′)X(n) + QoHPo]T (n)
[
E

(n)
eff − E′

f Po

]−1
(T (n))−1. (6.15)

As the model space So usually has a small dimension this inversion is without problems
whenever the matrix H ′ is diagonal (the condition is identical for the procedure associated
with equation (5.35)).

A second, more drastic difficulty, relates to the convergence of the sequence of iterates
arising from the use of (6.15). To increase the radius and also the speed of convergence two
modifications of the procedure have been tested (Jolicard et al 2003).

(i) The first concerns the choice of the arbitrary diagonal matrix H ′. The simplest choice
is to identify H ′ with the diagonal part of H. This option makes the diagonal elements
(which are often the largest elements) zero in Y (equation (6.13)). Another choice,
E′

f = (E′
f )(n) = 〈f |(1 − X(n))H(1 + X(n))|f 〉 leads to the RDWA approach which has

been explained in section 3.4.
Nevertheless, the divergence of this series is more commonly due to accidental near

resonances in the denominator between the eigenvalues of the effective Hamiltonian
H eff = Po(H + HX)Po and the diagonal elements of QoH

′Qo. To suppress these effects
a second option is to identify QoH

′Qo with the diagonal part of QoHQo, except for a
reduced group of Np states, which are selected as the states of S+

o whose eigenvalues are
the nearest in the complex plane to the eigenvalues of the states included in the space So.
For these states usually responsible for accidental resonances the corresponding diagonal
elements H ′

jj are chosen to be Hjj + δjj , where the complex shift δjj is chosen to produce
a minimum distance δE between H eff

jj and the nearest eigenvalue of the complementary
space S+

o . In the simplest case of a one-dimensional model space, this option involves
moving all the Np nearest eigenvalues outside a circle which is centred on the effective
eigenvalue and has the radius δE.

(ii) The second modification is the introduction of non-linear transformations such as Padé
approximants (Killingbeck 1991), Aitken’s �2 method (Bender and Wu 1969) or the
Borel transformation to improve the convergence. In our example, it is the diagonal
[N,N ] Padé approximant which has been tested. The convergence criteria for Stieltjes
series cannot be applied in the present case (Baker 1965), but non-Stieltjes series have
often been found to be summable using Padé methods (Austin and Killingbeck 1982).
The procedure which has been tested involves a two-step calculation. It is presented here
in a simple form by assuming a one-dimensional model space.

During the first step the series (6.15) is calculated up to a finite order Niter, (typically
Niter ∼ 20). Simultaneously the Np states (j) which generate accidental resonances, and
thus fast divergences of the series (6.13), are selected and the corresponding Np series of
Niter elements stored:

Xn=0
j,i , Xn=1

j,i , . . . , X
n=Niter
j,i j = 1 to Np

The Padé procedure is applied to these Np series by considering successively the real
parts and the imaginary parts using the scalar Wynn epsilon algorithm, as explained in
part I. These calculations lead to Np complex values

(
XPad

j,i

)
, j = 1 to Np. In a second

step, the series (6.13) is calculated again by keeping these Np components constant and
equal to their Padé values. A test of convergence is made at the end of this second step.
If the test is not satisfied, the two steps are repeated by starting with the non-converged X
operator.

The effects of the two modifications (the use of the δ shifts and of the Padé
procedure) are shown in figure 10. This figure shows, on a logarithmic scale, the quantity
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Figure 10. Illustration of the effect of the choice of the matrix H ′ and of the use of Padé procedure
in the integration of equation (6.12). The figure presents the defect ‖H� − �(PoH�)‖2 on a
logarithmic scale as a function of the number of product H × � formed during the computation.
The four curves correspond to the four options: ×: δE = 0. and no Padé, + : δE = 10−3 and no
Padé, dashed line: δE = 0. with Padé, continuous line: δE = 10−4 with Padé.

‖H� − �(PoH�)‖2 as a function of the number of product H × X formed during the
computation.

The eigenvector investigated is the generalized Floquet state λv=0,n=0 of the H+
2 molecule

subjected to a Gaussian laser pulse (equation (5.29)) with an intensity of 4 × 1012 W cm−2.
The complete basis introduces 102 400 states, from which Nb = 300 are selected to participate
in the Padé procedure. Four curves are presented which correspond to four different
options: × : δE = 0. and no Padé procedure, + : δE = 10−3 and no Padé procedure,
dashed line: δE = 0 with the Padé procédure, continuous line: δE = 10−4 with Padé
procédure. These figures show that the Padé procédure is highly effective, particularly when
it is combined with a convenient choice of the H ′ matrix.

6.3. The time-dependent optical potential

Our discussion of the time-dependent wave operator equation has touched on the use of a
TDOP. This concept has been discussed earlier in the literature in a different context. The
TDOP allows for some spurious effects produced by the projection of the wavefunction into a
finite subspace. These effects are reduced by the inclusion of pseudostates which represent the
infinite complement of the original representation space in a global way, as in the absorber state
approach (Riera 1984, Errea et al 1985, 1987), or by using a formulation of TDOP to eliminate
the couplings between the two segments of Hilbert space (Austern 1967, Schultheis et al 1984,
Lüdde et al 1993).

The splitting of the wavefunction into two complementary space components

|�〉 = ∣∣�Po

〉
+
∣∣�Q0

〉
(6.16)

and the projection of the TDSE into the model space leads to{
PoHF Po

∣∣�Po

〉 = −PoHF Qo

∣∣�Qo

〉
QoHF Qo

∣∣�Qo

〉 = −QoHF Po

∣∣�Po

〉 (6.17)
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where the source terms on the right-hand sides of equations (6.17) are neglected in methods
which solve truncated close-coupling equations.

The optical potential model remedies in a global way the undesirable effects of truncating
to a limited subspace by introducing in (6.17), in place of the exact term −PoHF Qo|�(t)〉,
the term −iVopt(t)

∣∣�Po
(t)
〉

which defines the TDOP Vopt(t).
In the perturbative approach of Austern (1967), the calculation of the component

∣∣�Qo

〉
is

carried out by using a Fourier transform of
∣∣�Po

(t)
〉

in the second equation of (6.17) together
with an explicit expansion in terms of the stationary eigenfunctions of QoHQo which obey
the equation

HQoQo
φEQo

= EQo
φEQo

. (6.18)

A simplified description of the continuous spectrum of the projected Hamiltonian leads finally
to the approximation

Vopt(t) ∝
∑
EQo

HPoQo

∣∣φEQo

〉 〈
φEQo

∣∣HQoPo
. (6.19)

In the treatment of Schultheis et al (1984), a stationary state expansion of PoHPo is used and
the optical potential is arbitrarily chosen to be both diagonal in the energy representation and
linear in the time (leading to satisfactory results).

In the treatment of Lüdde et al (1993) a different point of view is adopted by introducing
a dynamical basis in the Po space (assumed to be a stationary space, i.e. d/dtPo = 0), by
solving the truncated close-coupling equations for an orthonormal set of N initial conditions.

PoHF Po

∣∣�j

Po
(t)
〉 = 0 j = 1 to N. (6.20)

The definition of the Po space amplitudes: c
j

Po
(t) = 〈

�
j

Po
(t)|�Po

(t)
〉

leads to the exact Po

space coupled channel equations

d

dt
ck
Po

(t) = −
N∑

j=1

∫ t

−∞
Kkj (t, t

′)cj

Po
(t ′) dt ′ (6.21)

where the non-local optical potential K(t, t ′) is given by the expression

Kkj (t, t
′) = 〈

�k
Po

(t)
∣∣HF (t)UQo

(t, t ′)HF (t ′)
∣∣�j

Po
(t ′)

〉
(6.22)

where UQo
(t, t ′) is the propagator within the complementary Qo space.

This last expression for the optical potential has an advantage over the earlier ones cited
above in that it leads to a formally exact description of the dynamics in the Po segment of the
Hilbert space. However, the description of the Qo space dynamics still requires an approximate
treatment. For this Lüdde et al (1993) proposed various schemes, including an instantaneous
approximation of K(t, t ′) as well as what they term a non-Markovian approximation of
K(t, t ′). Probably the most successful scheme is their ‘doorway approximation’, which
involves a dynamical extension of the Po space by the part of the Qo space to which it
is directly coupled. This scheme was applied to some electron-ion scattering problems by
Henne et al (1993).

The TDOP approach outlined above appears at first sight to be quite different from the
TDWOT, but a detailed analysis reveals some conceptual similarities between the two methods.
Both methods have the same aim, namely the suppression of any reflecting quantum flux from
the Qo space back to the Po space. From this point of view equations (2.26) and (5.1) are
equivalent to equation (6.21), except that (2.26) has the formal advantage of being an equation
of motion for the reduced time-dependent wave operator in a form which does not involve any
particular basis set expansion.
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It should be noted, however, that the TDOP method which is associated with the TDWOT
framework (Jolicard et al 2004) involves a point of view which is quite distinct from that of
the TDOP methods outlined above. In TDWOT the optical potential is not used to isolate
the two subspaces (since this isolation is achieved by the wave operator) but is used to
impose obedience to consistent boundary conditions over a lengthened time interval in order
to transform the problem of solving the dynamical equation (5.1) for the time-dependent wave
operator into the problem of solving an equivalent eigenvalue problem.

7. The wave operator in the treatment of inelastic and photoreactive processes

The laser control of molecular dynamical processes is today one of the major goals of
photochemistry. The possibility of reaching large radiation field intensities using short-pulsed
lasers has motivated an increasing amount of experimental and theoretical work (Corkum 1985,
Cornaggia et al 1986, Bandrauk and Wallace 1992) By varying the intensity, the frequency
and the pulse shape of the field (Chelkowski et al 1990), it is possible to control scalar
observables such as total or partial dissociation rates and vector observables such as alignment
and orientation. Isotope selectivity (Atabek et al 1994, Charron et al 1996) and electron
transfer dynamics (Coalson et al 1996) are also areas of applicability for control processes.

From a purely theoretical point of view the interest in laser control has led to several
interesting problems. We present here a few of those which seem to us to be the most pertinent
and analyse the points of view and the methods which arise from wave operator theory.

Gas-phase short pulse laser experiments are generally carried out using non-perturbative
intensities at which different processes are in competition. Non-linear optical effects in
the absorption spectrum and various phenomena related to the deformation of the molecule
by its multiphoton coupling with the laser field often appear simultaneously in experiments.
Examples of such phenomena include the bond-softening effect underlying the above-threshold
dissociation (ATD) process (Zavriyev et al 1990, Giusti-Suzor et al 1990) and the vibrational
trapping phenomenon (Yao and Chu 1992, Giusti-Suzor and Mies 1992, Atabek et al 1994).
In the ultraviolet (UV) spectral region, such non-linear processes are well described using
the Floquet representation, in which they refer to effects induced at avoided crossings of
low order between dressed potentials. In the strong field regime, ionization effects modify
the dissociation processes (Chelkowski et al 1992); for example, the stabilization of the
laser-induced vibrationally trapped states, which is observed for H+

2 at intensities of about
1013 W cm−2 and for times shorter than 50 fs, is destroyed at higher intensities by the
presence of competing ionization and Coulomb explosion effects (Chelkowski et al 1995).
In the infrared (IR) spectral region, a quasi-static adiabatic picture is more appropriate and
new vibrational trapping effects which have a dynamical origin can occur. These new
types of phenomena, named dynamical dissociation quenching (DDQ), depend crucially
on a proper synchronization between the field oscillations and the wave packet dynamics
(Châteauneuf et al 1998, Abou-Rachid et al 1999). Alignment of molecules along the electric
field axis can also be produced, via their anisotropic polarizability, by using non-resonant
linearly polarized laser fields. A variety of photodissociation effects can be produced.
Ultrashort pulses which create a superposition of rotational states can be used (Seideman 1999)
as well as nanosecond pulses which produce an adiabatic alignment resulting from the creation
of an effective double-well potential whose minima are in the directions of the field polarization
(Ortigoso et al 1999). Molecular orientation effects are produced by strong electrostatic fields
via the permanent dipole moments of the molecule (Hain et al 1999). Such orientation effects
are enhanced in the presence of a coherent laser field (Friedrich and Herschbach 1999) as a
consequence of the breaking by the electrostatic field of the double-well symmetry induced
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by the laser field. The importance of the simultaneous presence of permanent and field-
induced dipole moments has been investigated by Dion et al (1999a) and new methods of
orientation of polar molecules using two-frequency IR laser have been proposed by Dion et al
(1999b).

A further interesting theoretical feature of laser control effects arises from the possibility
of analysing them using extended Hilbert spaces and the Floquet Hamiltonians which operate
in these spaces. From this point of view laser control theory provides a good illustration
of the Floquet formalism, involving an adiabatic separation between the fast field-oscillation
dynamics and the slow time-modulation introduced by time variations of the field envelope
which are caused by adiabatic modulations of the field frequency or by internal molecular
motions. Appropriate intermediate representations can then be invoked by considering
instantaneous Floquet eigenvector basis sets and taking into account the quasi-periodicity of the
radiative coupling in each optical period (Shirley 1965). Many studies have revealed that the
description of the dissociation processes needs only a few eigenstates of these representations,
provided that the perturbation duration spans only a few optical cycles, and also that adiabatic
transport techniques can be used when describing these non-adiabatic behaviours, by taking
into account different degrees of approximation, e.g., by neglecting some non-adiabatic
couplings (Nguyen-Dang et al 1995) or by introducing high-frequency approximations in the
Floquet analysis (Keller et al 2000). These dressed state models emphasize the importance of
the laser-induced avoided crossings by clearly showing that dissociation processes or inelastic
transitions are characterized by the presence or absence of nonadiabatic jumps at the avoided
crossings of instantaneous Floquet states (Guérin and Jauslin 1997, Guérin et al 1997). In
the case of dissociation, the dissipative character of the process complicates the scheme and
its analysis requires some care: the Floquet eigenenergies of the metastable resonances are
complex and the concept of avoided crossings has to be extended to the complex energy
plane, as illustrated by figure 11. This generalization introduces a competition between
two mechanisms which generate non-adiabaticity, yielding a final wavefunction which is not
identical to the initial wavefunction multiplied by a phase factor. The first mechanism is
produced by one or many non-adiabatic transitions occurring at the avoided crossings, and the
second is associated more simply with the dissipative character of the process, i.e. the complex
nature of the Floquet eigenvalues. The photodissociation of H+

2 by UV lasers is, for example,
often described using a single generalized Floquet eigenstate. In such a case the photoreaction
process is correlated with an exponential decrease of the norm of this single eigenstate.

The crucial consequence of the near-adiabatic character of these processes in the
framework of the Floquet theory (Chu 1985, 1989) is the small dimension of the active
space into which the dynamics controlled by the effective Hamiltonian is projected. This
has led to the rapid development of new attempts to extend the standard Floquet theory,
for example, the exact adiabatic representation of Nguyen-Dang (1989), which has been
applied to the general laser-driven two- and three-level system (Nguyen-Dang et al 1991) and
the time-dependent density functional theory (TDDFT)-Floquet formalism (Telnov and Chu
1998), which provides a general time-independent approach for the treatment of multiphoton
processes of many-electron quantum systems in the presence of quasi-periodic laser fields.
The Berry phase concept (Berry 1984), which is closely related to the Floquet formalism
and was first introduced for time-periodic quantum systems in an adiabatic context, was later
extended to non-adiabatic and non-periodic systems (Aharonov and Anandan 1987, Anandan
1988). Moore and Stedman (1990) showed that Berry’s formalism can be extended to a non-
adiabatic time evolution by a proper choice of the initial states. Their approach, based on the
knowledge of the exact evolution operator, has recently been simplified by Monteoliva et al
(1994), who proposed a method for calculating Berry phases for non-adiabatic time-periodic
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Figure 11. Photodissociation of SiO: The imaginary part on a logarithmic scale of the four
eigenvalues of the Floquet eigenstates corresponding to the initial vibrational state v = 0 of the
X1�+ potential surface and to the three shape resonances of the E1�+ potential surface as a
function of the photon energy. The figure illustrates the rapid mixing of the widths which appears
when the laser is tuned to the transition between the bound state and one of the three resonances.

quantum systems in cases when a dynamical invariant is known. Berry’s super-adiabatic basis
concept (Berry 1990) has also been used by Dresse and Holthaus (1999) in a Floquet treatment
of quasi-periodic Hamiltonians, by introducing unitary transformations to construct basis sets
which are well adapted to the fast part of the dynamics.

The last and certainly most interesting feature of laser control theory is its status
as an inverse problem (Warren et al 1993, Gross et al 1993, Holthaus and Just 1994,
Brown and Rabitz 2002). In a control experiment, the final required result is known in
principle. One wishes, for example, to produce a maximum value of the photodissociation
probability or a well-defined orientation of the molecule, but does not know the time-
perturbations which produce such results. The conventional propagation methods are
consequently relatively inadapted, because their use requires the repetition of many
propagations to adjust the few coupling parameters which determine the success of the control
process.

The TDWOT is an efficient tool to overcome several difficulties. In particular, it offers
the possibility of generalizing the adiabatic theorem and of solving in the complex plane the
degenerate eigenvalue problems associated with avoided crossings. Equation (5.1), which
illustrates the close relation of the TDWOT with both the eigenvalue equation theory and
the Floquet theory, suggests its potential in handling problems for which we require a full
dynamical description of only part of a system. TDWOT is not, of course, the only theory able
to describe the dynamics of a subsystem of interest and various effective Hamiltonian theories
have been developed for the calculation of effective interactions. In the time-dependent
self-consistent field (TDSCF) approach, for example, the solution is sought by expressing
the wavefunction in a Hartree product form (Gerber et al 1982, 1988, Billing and Mikkelsen
1997) and the problem is reduced to an approximate one involving separable modes. When this
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method allows for some coupling between the modes, this coupling is of an average type and
the correlation between the modes is not described correctly. Thus, the TDSCF intrinsically
incorporates approximations of which it is difficult to estimate the consequences. One can
simply expect that this treatment is valid if the coupling is weak or extremely localized in time
but must also anticipate that it involves large errors when the wave packet breaks down into
many parts. The TDWOT, in contrast, aims at a rigorous treatment. When approximations
are made, they result from the use of a finite expansion on the Floquet eigenstates
(equation (5.16)), but the subsequent errors can be quantified and controlled.

We can investigate the pertinence of the TDWOT in the treatment of molecular interactions
by considering successively two differents types of dynamical process. The first type,
illustrated by dissociations induced by short and intense laser pulses and by inelastic collisions
(see section 7.1), corresponds to the case of interactions of short duration (T < 10−13 s).
The second type, illustrated by the case of long duration laser pulses, involves quasi-
periodic interactions for which the TDWOT leads to a degenerate active space solution (see
section 7.2).

7.1. Short duration interactions

We will first consider the photodissociation of the H+
2 ion subjected to a very short and

intense laser pulse. This system, described in section 5.3, is characterized by a pulse
(described by equation (5.29)) whose total duration is equal to about 35 fs (with switch-
on and switch-off times of 5 fs), included in a larger interval of 72.56 fs which is used for
the mathematical representation. For such a short time the TDWOT proposes two different
integration techniques. The first, called ‘generalized Green function integration’ has been
described in section 5.4. It is an iterative integration process for the wave operator equation; its
implementation is made easier by the small Fourier basis needed to span the short time interval.
The use of this iterative procedure (based on equation (5.35)) is currently being developed.
The main advantage of this option lies in the possibility of repeated rapid calculations of the
wavefunction for a series of slightly different Hamiltonians, each one using the solution from
the preceeding step as a starting solution.

The second technique uses the expansion of the wavefunction in the complete basis
provided by the generalized Floquet eigenstates (equation (5.21)), i.e. the eigenvectors of the
whole Floquet Hamiltonian in the extended Hilbert space; it is the use of this basis that gives
the method its originality. The nature of these eigenstates is not trivial. At the adiabatic limit
they are certainly the simple juxtaposition at successive instants of the instantaneous Floquet
eigenstates. This relationship, which makes the generalized Floquet eigenstates appear as a
generalization of the instantaneous Floquet eigenstates, links together the quasi-stationary and
the dynamic processes, which are often treated as irreconcilable in the literature. This is, for
example, the case for the two different forms of stabilization, the quasi-stationary stabilization,
which refers to the limiting case of plane-wave monochromatic radiation, and the dynamic
stabilization, which refers to laser pulse radiation (Gavrila 2002). Outside the adiabatic limit
the relationship between instantaneous and generalized Floquet eigenstates is certainly more
intricate. In contrast to the instantaneous Floquet eigenvectors, which simply include in
their components the static informations about the geometry of the avoided crossings and
about the magnitude of the non-adiabatic couplings, the generalized eigenvectors also include
dynamical information about the influence of the cross-velocities. The total history of the
dissociation process is thus implicit in the initial expansion of the wavefunction described by
equation (5.21) and a purely dynamical problem is transformed into a static eigenvalue one.
In this context it is easy to understand both the reliability of the generalized Floquet approach
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Figure 12. Inelastic transition probabilities during the photodissociation of H+
2 as a function of

the time. P0→1 (diamonds) and P0→2 (circles) are exact solutions obtained by integration of the
Schrödinger equation. Solid lines indicate the results corresponding to the Floquet eigenstates
expansion (equation (5.21)) with a single (a) or two (b) eigenstates.

and the validity of a single state generalized Floquet approximation, at least for calculating a
global observable such as the photodissociation probability. By introducing expansion (5.21)
into the expression for the total dissociation rate (Jolicard et al 2002):

Pdiss(t) = 1 −
∑

bound states v

|〈v|�(t)〉|2 (7.1)

and by limiting the expansion to the initial bound state v = 0, one obtains the approximation:

Pdiss(T ) � 1 − exp(−�λv=0,n=0 × T/h̄). (7.2)

By introducing into this last equation the generalized Floquet eigenvalue: Eλv=0,n=0 =
−0.9733 9795(−1) − i 0.1563 5260(−4), (see figure 7), and the representation interval
T = 72.56 fs, one gets Pdiss(T ) = 0.089 55, in good agreement with the exact results
Pdiss = 0.088 06. This result also illustrates that it is not the width � of the generalized
Floquet eigenstate which possesses a physical meaning, but rather the product � × T .

The process is thus globally adiabatic (one generalized Floquet eigenstate is sufficient to
correctly describe the dissociation process) but not rigorously adiabatic. The non-adiabaticity,
which is related to the degeneracy of the active space (see the comments after equation (5.23)),
is revealed by an analysis of the inelastic transition probabilities.

In figure 12 the probability P0,2(t) is seen to decay to zero in accordance with the
predictions of an adiabatic transport model. An approximate calculation with a single
generalized Floquet state |λv=0,n=0〉 is thus appropriate (figure 12(a)). P0,1(t) ends up with a
finite value at the end of the interaction, as is typical of a non-adiabatic transport process. The
approximate calculation working with only |λv=0,n=0〉 fails to produce the correct probability
and even gives non-zero values at the time origin (figure 12(a)). Accurate results are obtained
by introducing the second generalized Floquet eigenstate |λv=1,n=0〉 into the calculation
(figure 12(b)).
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These results lead to some questions which are currently been investigated. What is
the exact relation between the generalized Floquet eigenstates and the instantaneous Floquet
eigenstates? Can the first type really just be regarded, in the adiabatic perturbation regime, as a
simple juxtaposition of the second type at successive times? Can this generalized Floquet state
approach be improved by defining super-adiabatic basis sets and asymptotic transformations
in order to reduce the active space size for non-adiabatic processes?

The application of this technique is not limited to the description of photoreactive
processes but can also be applied to the semi-classical treatment of inelastic molecular
collisions. The so-called VqRcTc method, in which both rotation and translation are treated
classically, was introduced many years ago by Billing (1975, 1978). This approach reduces
the quantum dimensionality of the problem and for heavy diatomic molecules such as CO
or N2 it gives results which are, for a wide range of energies, much better than the quantum
infinite order sudden (IOS) approximation when both are compared to the coupled-states (CS)
results. Billing (1986) tested this approach on the system He–N2 by using the potential energy
surface (PES) of Banks et al (1986). The PES is given by the following expression:

V (R, r, γ ) =
2∑

i=0

Vi(R, γ )(r − r̄)i/r̄ i (7.3)

where

Vi(R, γ ) = ∂i

∂ri


 2∑

j=1

Cj exp(−αjRj ) − ajR
−6
j


 (7.4)

for i = 0 and i = 1; for i = 2 only the short range term is included in equation (7.4). R is the
distance from He to the centre-of-mass of N2, r the N2 interatomic distance and γ the angle
between R and r.

The time-dependent Hamiltonian which drives the quantum oscillator is given by the
Hamiltonian Ho(r) of the isolated N2 molecule plus a time-dependent perturbation relating to
the matrix elements of the potential (equation (7.3)) and the Coriolis coupling. Five different
functions Fi(t) (cf equation (5.13)) reproducing, on a common time interval, the translational
and rotational parts of these couplings are generated by integrating the classical equations of
motion after a symmetrization procedure of the initial kinetic+rotational energy U, namely for
the transition v → v′:

E − Ev = 1
2�E + U + �E2/16U (7.5)

where E is the total energy and �E = Ev′ − Ev .
The Floquet procedure can be implemented by integrating for each collision the classical

part of the motion, by expressing the different time-functions Fi(t) in a finite discrete Fourier
basis |n〉, 〈t |n〉 = exp(in2π/T ), where T is the common time interval on which the functions
Fi(t) are found, and finally by expressing the wavefunction as an expansion as described by
equation (5.21). For each transition v → v′ the summation in (5.21) is limited to the two
generalized Floquet eigenstates, |λv,0〉, and |λv′,0〉 which are associated with the initial and the
final vibrational states.

Figure 13, which compares the Floquet results with results obtained by a direct integration
of the TDSE, reveals a good agreement between the Floquet treatment and the exact one. One
can understand this by noting that the vibrational relaxation is an adiabatic process. We
see in figure 13 that the probabilities P1→0, and P1→2 increase to rather large values at
the turning point and that the small final values are indicators of the small asymmetries of
the trajectories around the turning points. The Floquet treatment, which includes this concept
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Figure 13. Rotational transition probabilities P1→0 and P1→2 for He + N2 on a logarithmic scale,
as a function of time. The solid lines are the ‘exact’ semi-classical results. The dots correspond to
the Floquet expansion (equation (5.21)) limited to two states.

of quasi-symmetry through its use of periodic Floquet eigenfunctions, is consequently an
efficient approach.

In the present application the quantum basis set is very small and the Floquet approach
does not have a pronounced advantage. This is undoubtedly not the case in other situations,
for example for vibrational relaxation studies on polyatomic molecules, where the vibrational
basis set can include more than 104 elements. For these large systems, the calculation using
Floquet eigenstates introduces a large saving of CPU time as compared to the integration of
the TDSE by using wave packet propagation techniques.

7.2. Quasi-periodic interactions

In the case of long electromagnetic pulses, with time durations of typically 10−12 s, the previous
Floquet treatment is inapplicable. These intermediate time durations, between ultrashort pulses
and cw laser fields, lead to a difficult choice of an appropriate formalism.

The standard Floquet formalism is unsuitable since the periodicity is destroyed by the
adiabatic evolution of different parameters such as the field amplitude or the frequency of
the laser field. Wave packet propagation can then be used (Heather 1991) but requires large
CPU times for such long time intervals. To reduce the CPU time used in these propagations,
the (t, t ′) theory (Peskin and Moiseyev 1993) avoids the introduction of the time ordering
operator and allows techniques originally developed for time-independent Hamiltonians to
be used. Another advantage of this Floquet formulation lies in its consistency with the use
of the active space (AS) concept and the method of projection of the dynamics into this
space. For cw laser fields, numerous ways of defining such active spaces have been developed
in the literature. Quack’s quasi-resonant approximation (Quack 1978, 1982) and Whaley
and Light’s rotating frame approximation are techniques producing active spaces specific
to some particular Hamiltonian. More general solutions have been given by the multitier
approach (Voth 1986, Voth and Marcus 1986) and by several artificial intelligence techniques
(Tietz and Chu 1983, Chang and Wyatt 1986, Lederman and Marcus 1988).
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The wave operator formalism can also be used to solve these problems of intermediate
time durations by introducing the evolving target space concept (Jolicard and Billing 1994).
This concept will be presented by assuming that the Floquet Hamiltonian which describes
the interaction between the field and the molecule depends on a few parameters which evolve
adiabatically over finite ranges during the interaction, namely

HF = HF (t,−ih̄∂/∂t;α1(t), . . . , αn(t))

with

αmin
j � αj � αmax

j j = 1 to Nα. (7.6)

In this discretization model, the variation range
[
αmin

j , αmax
j

]
of each parameter is divided into

Nj elementary intervals of the same width, thus defining Nj discrete values αl
j uniformly

distributed between αmin
j and αmax

j . During the time evolution the continuous functions αj (t)

are approximated by step functions which take the values αl
j when αj (t) satisfies the inequality:

αl
j � αj (t) < αl+1

j .
The main approximation of this treatment can now be defined. It involves the instantaneous

Floquet eigenstates corresponding to different sets of discrete values of the parameters α,(
Ho − ih̄

∂

∂t
+ V

(
t;α

l1
1 , . . . , αln

n

))
λ

(l1,...,ln)
β = E

(l1,...,ln)
β λ

(l1,...,ln)
β (7.7)

where Ho is the Hamiltonian of the isolated molecule. The time dependence of the laser-
molecule interaction V comes from the periodic term of the laser field, to which the non-
periodic perturbations produced by the parameters α(t) are added. In the following discussion
the notation is simplified by taking a unique index k in place of the set (l1, . . . , ln), with k
evolving between 1 and N = ∏Nα

j=1 Nj. In accordance with this choice, the Floquet eigenvectors
are written as

∣∣λk
β

〉
. Moreover, we assume that during the evolution the set of parameters

undergoes transitions k → k′, corresponding only to the unitary variation of one of the Nα

parameters: αl
j → αl+1

j or αl
j → αl−1

j .
The evolutional target space approach assumes the existence of an initial active space

So exclusively determined by the initial molecular state and by the laser-matter interaction.
This initial set of adiabatic parameters, identical to the final set, corresponds to k = 1 in our
notation. This space is spanned by a group of No free Floquet eigenstates. For each new value
of the set of the adiabatic parameters (specified by k), a new target space S(k) of the same
dimension is formed by solving the degenerate stationary Bloch equation (HF � = �HF �).
This corresponds to deriving the new Floquet eigenvectors

∣∣λk
η

〉
from the relevant free vectors∣∣λk=1

η

〉
by turning on the field-matter interaction adiabatically.

The simplified relaxation scheme finally assumes that at each discontinuity of one of the
parameters (represented by the transition (k → k′)), the wavefunction located in the subspace
S(k) is completely projected into the subspace S(k′). Thus, if one assumes that at time t, the
set of adiabatic parameters is specified by k and if this set is constant between the instants t
and t + �t in the discretized picture, then the wavefunction evolution is simply given by the
equation:

�(t + �t) =
∑

β∈S(k)

exp

[
− iE(k)

β �t

h̄

] 〈〈
λ

(k)
β

∣∣�(t)
〉〉∣∣λ(k)

β

〉
. (7.8)

If, in contrast, t is the instant at which the discontinuity (k → k′) appears in the parameter set,
one has, in conformity with the sudden approximation:

lim
ε→0

�(t + ε) = lim
ε→0

�(t − ε). (7.9)
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As the wavefunction is confined at any time in the target space corresponding to the
instantaneous parameters we can set

lim
ε→0

�(t + ε) =
∑

γ∈S(k′)

∑
β∈S(k)

[〈〈
λ(k′)

γ

∣∣λ(k)
β

〉〉 〈〈
λ

(k)
β

∣∣�(t)
〉〉]∣∣λ(k′)

γ

〉
(7.10)

so that finally the wavefunction issuing from |i, n = 0〉 at t = 0 can be written at any time as

�(t) =
∑

γ

∣∣λkn

γ

〉
expφkn

γ

∑
β

〈〈
λkn

γ

∣∣λkn−1
β

〉〉
γ �=β

expφ
kn−1
β · · ·

∑
µ

expφ
k1
µ
〈〈
λk1

µ

∣∣i, n = 0
〉〉

with

φkn

γ = − i

h̄
Ekn

γ �tkn
+
(〈〈

λkn

γ

∣∣λkn−1
γ

〉〉− 1
)
. (7.11)

At this point we recall the adiabatic conjecture for a single Floquet state, which can be
expressed in the form ‘if �(t = 0) is identical to a Floquet state |λα(0)〉 and if this Floquet
state is isolated during the evolution, then the system remains in the instantaneous Floquet
eigenstate continuously connected to |λα(0)〉’. The associated mathematical equations are

�(t) = exp(φλ(t))|λα(t)〉
with

φλ(t) = 1

ih̄

∫ t

0
Eα(s) ds −

∫ α(t)

α(0)

〈〈
λα

∣∣∣∣ ∂λ

∂α

〉〉
dα. (7.12)

It can now be seen that equation (7.11) is the mathematical expression of a further
generalization of this adiabatic conjecture to deal with the case of a sequence of
multi dimensional target spaces. Compared to (7.12), equation (7.11) describes situations
in which the evolution consists of non-adiabatic transitions inside the successive target spaces.
It also has other advantages.

• First, it reproduces correctly the sudden approximation in the case of rapid variations of
the varying parameters.

• If the set of varying parameters is constant over a large time interval, the wave packet is
propagated on this interval by using only one propagation step.

• The time dependence of the Nα adiabatic parameters is completely implicit in the time
step values �tkn

. To a set of time steps corresponds a precise set of time functions
and if the functions αj (t) are changed, the only consequence is the change of the time
steps. Consequently, it is possible to repeat fast calculations for different time functions
αj (t), without the need to repeat detailed and large CPU time consuming procedures.
For this, some data should be stored during the initial construction of the target spaces,
in particular, the eigenvalues Ekn

γ and the overlap matrices
〈〈
λkn

γ

∣∣λkn−1
β

〉〉
. This is possible

because the strongly adiabatic character of the Floquet basis set produces small target
spaces, typically of dimension less than 20, and also because each set of parameters
specified by kn is connected by the field-matter coupling to only 2 × Nα other different
sets specified globally by kn−1. This feature is particularly favourable for the study of
control phenomena.

Another effective Hamiltonian approach has been proposed recently by Guérin (Guérin et al
2002, Guérin and Jauslin 2003) by using the quantum analogue of the Kolmogorov–
Arnold–Moser (KAM) transformation developed in classical mechanics (Scherer 1994,
Chandre and Jauslin 1998), also known as the Van Vleck perturbation theory (Van Vleck
1929) and by treating resonant effects by rotating wave transformations. Their studies connect
the efficiency of the population transfer between the initial and target states to the topology
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Figure 14. The probability for dissociation of H +
2 from the ground vibrational state as a function

of time. The intensity is equal to I = 2.51013 W cm−2. The full curve at the bottom represents
the envelope of the field. The dashed, dotted and full lines refer to target spaces of increasing size
(No = 1, No = 6, No = 20). These results often coincide, making it difficult to distinguish them.

Figure 15. The same as figure 14 but with a laser frequency ωo = 0.214 a.u.. The dashed-
dotted line represents the dissociation probability deduced from the norm of the wavefunction
(Pdiss(t) = 1 − ‖�(t)‖y2).

of the dressed state energy surfaces, which varies as a function of the time-dependent external
field parameters (Yatsenko et al 2002). This topology is essentially determined by the avoided
crossings of surfaces and conical intersections. More precisely the adiabatic transport appears
in their studies as a global adiabatic passage along one eigenstate trajectory, combined with
local diabatic evolution near conical intersections.

Our treatment does not involve the same restriction. Equation (7.11) involves different
adiabatic ‘trajectories’ which can interfere and the corresponding diabatic transitions can
in principle appear anywhere, even if they are concentrated in reality near the conical
intersections. It is evident that the validity of our scheme depends primarily on the definition
of the initial active space within which the dynamics is confined. For this selection, one
can use the wave operator sorting algorithm, generalized to a multiple choice procedure by
Jolicard and Billing (1994). Figures 14 and 15 illustrate the use of the evolutive target concept
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for the study of the photodissociation of H+
2. This system is very simple, since it involves only

one adiabatic parameter, the amplitude E(t) of the electric field. Figure 14 corresponds to a
value of the laser frequency ωo = 0.40 a.u., which favours a direct transition from the ground
state v = 0 of the electronic surface (1sσg)�

+
g to the dissociation surface (2pσu)�

+
u . Figure 15

corresponds to ωo = 0.214 a.u.; this choice implies a predominance of two-photon processes.
In both cases an active space of 20 states is formed by using the wave operator algorithm
with a multiple-choice procedure, i.e. by varying the field intensity from 0.25 TW cm−2 up
to 25 TW cm−2 and by varying the frequency ω of the Floquet Hamiltonian around the laser
frequency ωo. The successive calculations give similar results and produce active spaces
which have in common a large majority of states (e.g., for ωo = 0.40, 18 of the 20 selected
states |n, j 〉 are common to all the results).

The analysis of figures 14 and 15 reveals the small size of the evolutive target space
needed to give converged results (six states in the case of figure 14; this should be compared
with the dimension N = 1500 of the full space). This justifies a posteriori the use of the
wave operator theory. Another advantage of this formulation is its ability to reveal the detailed
mechanisms which contribute to the photoreactive process. For example, one can easily
explain the differences in the shapes of the dissociation probabilities in figures 14 and 15 (note
that in figure 14 the probability is a purely increasing function). This strong difference results
from the different behaviours of the parameter

∫ T

0 �λv=0,n=0 , where T is the duration of the laser
pulse and � the width of the Floquet eigenstate associated with the initial state.

8. Conclusion

Within molecular physics the study of modern topics such as control methods for photoreactive
processes requires the treatment of the time-dependent Schrödinger equation in spaces which
have a dimension which is very large and which is often made even larger by the need to use
the extended Hilbert space associated with the Floquet Hamiltonian. The need to minimize
required computational CPU time and to produce simplified and effective conceptual schemes
has led to renewed interest in effective Hamiltonian theories. However, the non-rigorous
character of many effective Hamiltonian theories prevents them from giving an accurate
description of photoreactive processes, the theory of which requires an accurate description of
the various dynamical processes involved. To be useful in this context, an effective Hamiltonian
theory should satisfy several criteria.

(i) It should be possible to estimate and control the degree of approximation introduced by
the theory.

(ii) The theory should be adaptable enough to treat both the periodic and the quasi-periodic
perturbations arising in the interactions between matter and cw laser fields or pulsed laser
fields (i.e. should be consistent with the Floquet theory).

(iii) The theory should be applicable to the non-Hermitian Hamiltonians which are generated
by analytical continuations of the resolvent in the complex plane when L2 representations
of the continua are used.

(iv) The theory should make it possible to make a rapid repetition of perturbative calculations
when physical parameters are slightly modified.

The TDWOT satisfies these different requirements. We have noted in section 7 that the
TDWOT is, in principle, an exact theory, unlike other procedures such as the time-dependent
self consistent field (TDSCF) approach. Deficiences arising in the application of the TDWOT
result from truncations of the Floquet basis sets and from the negligence of relaxation paths
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in the complementary space (see section 3), but these approximations are controlled by the
selection procedure for the model space.

The consistency of TDWOT with Floquet theory is intrinsically implicit in the basic
equation (5.1), which reveals that the time-dependent wave operator is driven by the Floquet
Hamiltonian. In this context an important feature is the representation of the dynamics using
a quasi-degenerate set of instantaneous Floquet eigenstates. The control process is essentially
conditioned by the dynamical effects which appear at avoided crossings of these states; the
TDWOT offers a direct view and a direct control over these key processes. In this way, it
introduces a generalization to the degenerate case of the adiabatic conjecture for Floquet states
(see section 7.2) by driving simultaneously interfering adiabatic trajectories on the dressed
state energy surfaces and by concentrating the diabatic transitions inside the evolving target
space.

The various iterative methods which have been proposed for the integration of the wave
operator equation, both the stationary and the time-dependent algorithms, are robust and able
to work with Hamiltonians which are rotated in the complex plane or which include added
complex optical potentials. The iterative nature of the methods makes possible the rapid
generation of new solutions, after slight modifications of the Hamiltonian, by applying the
iterative algorithms starting from the previous solution. In these calculations, the separation
which �(t) effects between adiabatic terms outside the model space and rapidly evolving
terms inside the model space is of prime importance. This separation, which is linked to
the extended form of the adiabatic conjecture, improves the convergence properties of the
algorithms.

Some technical aspects of the theory relating to the integration procedure, as well as some
formal aspects relating to the adiabatic conjecture in the extended Hilbert space are currently
still being investigated in a continuing research programme.

A permanent task is that of improving the integration procedure for the two basic
equations (2.26) and (5.1). This is a technical point, but clearly decides the success or
the failure of numerous studies in the strong perturbation regime. The smooth behaviour
of the components of �(t), which results from the separation effected by this operator
between the adiabatic terms and the rapidly evolving terms, reduces the number of time
steps needed in an explicitly time-dependent treatment and facilitates the implementation of
new algorithms, which can to some extent compensate for the difficulties due to the non-
linear nature of the equations. Non-linear transformations (e.g., Padé approximants) have
been tested successfully on the stationary iterative procedures and new approaches using
polynomial expansions techniques are under study.

The main questions, nevertheless, concern adiabatic transport problems, for which the
wave operator theory, through its close relationships with the Floquet theory, is an efficient tool.
It is at present too early to evaluate prospects for the generalized Green function procedure
described in section 5.4. More numerical tests should be made to validate this approach,
although this iterative integration method for the TDSE with a time-dependent Hamiltonian is
conceptually innovative.

On the other hand, the evolving target space concept (section 7.2) has been successfully
applied in conjunction with expansion in basis sets of both generalized Floquet eigenstates
(section 5.2) and of instantaneous Floquet eigenstates. These two expansions are not
independent and we are currently investigating (at the adiabatic limit), the relationship between
the generalized eigenvectors and the juxtaposition, at successive times, of the instantaneous
ones. The use of the generalized Floquet basis set has revealed that inelastic processes can be
described using very small basis sets in the intermediate perturbation regime. Further progress
is certainly possible by investigating this approach. Two strategies can be adopted. For control
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with quasi-periodic interactions, slightly modulated by a few adiabatic parameters, the model
presented in section 7.2 could be applied with instantaneous Floquet eigenstates parametrized
on multidimensional grids. For long pulses, this is certainly the best approach to obtain
a detailed understanding of the relationships between the attainable experimental efficiency
and the adiabatic character of the evolution in terms of Floquet states. For short pulses,
the generalized Floquet formalism is certainly a good choice. By increasing the adiabaticity of
such rapid processes it simplifies their study and the understanding of the different mechanisms
involved. For inelastic transitions, inconsistencies arise between the non-periodic features of
the relaxation process and the periodic character of the representation used; multidimensional
active spaces thus become necessary. To solve this difficulty, the ‘constrained adiabatic
trajectory method’, currently in development (Jolicard, et al in preparation) is a promising
approach. The conjoint use of the stationary wave operator theory and of time-dependent
absorbing potentials provides a compact dynamical theory in which the calculation of a single
generalized Floquet eigenvector suffices to describe correctly the dynamics of the TDSE.
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